精英家教网 > 高中数学 > 题目详情
已知函数的图像在点处的切线方程为.
(I)求实数的值;
(Ⅱ)当时,恒成立,求实数的取值范围.
(I);(Ⅱ)实数的取值范围为

试题分析:(I)由已知条件,先求函数的导数,利用导数的几何意义,列出方程组:,进而可求得实数的值;(Ⅱ)当时,恒成立由(I)知,当时,恒成立恒成立,.构造函数,先求出函数的导数:,再设,求函数导数,可知,从而在区间上单调递减,,由此得,故在区间上单调递减,可求得在区间上的最小值,最后由求得实数的取值范围.
试题解析:(I).由于直线的斜率为且过点.                                    2分
,解得.                   6分
(Ⅱ)由(I)知,当时,恒成立等价于恒成立.                                          8分
,则,记,则在区间上单调递减,,故在区间上单调递减,,                                   11分
所以,实数的取值范围为.                       13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求实数的最小值;
(3)证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).

(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线在点处的切线与轴的交点的横坐标为,令,则的值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则  

查看答案和解析>>

同步练习册答案