【题目】如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠DAB=90°AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC,E是线段AB的中点.
(1)求证:PE⊥CD;
(2)求PC与平面PDE所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)先证明,再证明,又,推出PE⊥平面ABCD,然后证明PE⊥CD;
(2)以E为原点,建立如图所示的空间直角坐标系,推出(2,1,0),(0,0,),(1,﹣1,),设(x,y,z)为平面PDE的一个法向量,由 可以求得(1,﹣2,0),设PC与平面PDE所成的角为θ,利用,最后得出PC与平面PDE所成角的正弦值为.
(1)∵AD⊥侧面PAB,PE平面PAB,∴AD⊥EP.
又∵△PAB是等边三角形,E是线段AB的中点,∴AB⊥EP.
∵AD∩AB=A,∴PE⊥平面ABCD.
∵CD平面ABCD,∴PE⊥CD.
(2)以E为原点,EA、EP分别为y、z轴,建立如图所示的空间直角坐标系.
则E(0,0,0),C(1,﹣1,0),D(2,1,0),P(0,0,).
(2,1,0),(
设(x,y,z)为平面PDE的一个法向量.
由 ,令x=1,可得(1,﹣2,0)
设PC与平面PDE所成的角为θ,得
所以PC与平面PDE所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知函数,有下列四个命题:
①函数是奇函数;
②函数在是单调函数;
③当时,函数恒成立;
④当时,函数有一个零点,
其中正确的是____________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年最严环保使得各地空气质量指数()得到了很大的改善,2018年环保部将会更加突出大气、水、土壤三大领域污染治理,继续实施和深化环保领域改革,强化环境执法督察.某市设有12个空气监测站点,其中在轻度污染区、中度污染区、重度污染区分别设有3、6、3个监测点.以这12个站点测得的的平均值作为该市的空气质量指标.
(Ⅰ)若某日的为120,已知测得轻度污染区的的平均值为80,中度污染区的平均值为116,求重度污染区的平均值;
(Ⅱ)如图是2017年11月的30天的值的频率分布直方图,其中分段区间分别为,11月份仅有1天的在之间.
①求11月的低于150的概率;
②双创活动中,验收小组要从中度污染区和重度污染区中按比例抽取六个监测点,然后从这六个监测点中随机抽取3个对监测数据进行核实,求至少抽到一个重度污染区的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九世纪末:法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”“随机端点”“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设为圆上一个定点,在圆周上随机取一点,连接,所得弦长大于圆的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列分别满足:,其中,其中,设数列前n项和分别为.
(1)若数列为递增数列,求数列的通项公式;
(2)若数列满足:存在唯一的正整数k(),使得,则称为“k坠点数列”
(Ⅰ)若数列为“6坠点数列",求;
(Ⅱ)若数列为“5坠点数列”,是否存在“p坠点数列”,使得,若存在,求正整数m的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.
(1)证明:;
(2)若的面积,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com