精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心事为
2
2
,过其右焦点F2作与x轴垂直的直线l与该椭圆交于A、B两点,与抛物线y2=4x交于C、D两点,且
AB
=
2
2
CD

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于G、H两点,设P为椭圆E上一点,且满足
OG
+
OH
=t
OP
(O为坐标原点),当|
OG
-
OH
|<
8
11
3
时,求实数t的取值范围.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由题设条件推导出
c
a
=
2
2
b2
a
=
2c
a2+b2=c2
,由此能求出椭圆E的方程.
(Ⅱ)设直线GH的方程为x=my+2,联立
x=my+2
x2
32
+
y2
16
=1
,得(m2+2)y2+4my-28=0,由此入手能求出实数t的取值范围.
解答: 解:(Ⅰ)∵直线l过右焦点F2且于x轴垂直,
∴|AB|=
2b2
a
,|CD|=4
c

又∵椭圆E的离心率为
2
2
,且
AB
=
2
2
CD

c
a
=
2
2
b2
a
=
2c
a2+b2=c2
,解得
a2=32
b2=16

∴椭圆E的方程为:
x2
32
+
y2
16
=1

(Ⅱ)由题意知直线GH的斜率不为0,设直线GH的方程为x=my+2,
联立
x=my+2
x2
32
+
y2
16
=1
,消去x得(m2+2)y2+4my-28=0,
设P(x,y),G(x1,y1),H(x2,y2),
y1+y2=-
4m
m2+2
y1y2=-
28
m2+2

∴x1+x2=m(y1+y2)+4=
8
m2+2

OG
+
OH
=t
OP

tx=x1+x2=
8
m2+2
ty=y1+y2=-
4m
m2+2
,∴P(
8
t(m2+2)
,-
4m
t(m2+2)
)

∵P点在椭圆上,∴将P点代入椭圆方程,得t2=
1
m2+2

∵|
OG
-
OH
|
8
11
3

∴|GH|2=(1+m2)(y1-y22
=(1+m2)[(y1+y22-4y1y2]
=(1+m2)[(
-4m
m2+2
2+
4×28
m2+2
]
=
32(1+m2)(4m+7)
(m2+2)2
64×11
9

14m4+11m2-25<0,∴0≤m2<1,
t2=
1
m2+2
∈(
1
3
1
2
)

∴t∈[-
2
2
,-
3
3
)∪(
3
3
2
2
]

∴实数t的取值范围是[-
2
2
,-
3
3
)∪(
3
3
2
2
]
点评:本题考查椭圆方程的求法,考查实数的取值范围的求法,综合性强,难度大,解题时要综合运用直线与圆锥曲线的位置关系,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆方程
x2
a2
+
y2
b2
=1(a>b>0),离心率为
2
2
,过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2y02为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市质监部门对市场上奶粉进行质量抽检,现将9个进口品牌奶粉的样品编号为1,2,3,4,…,9;6个国产品牌奶粉的样品编号为10,11,12,…,15,按进口品牌及国产品牌分层进行分层抽样,从其中抽取5个样品进行首轮检验,用P(i,j)表示编号为i,j(1≤i<j≤15)的样品首轮同时被抽到的概率.
(Ⅰ)求P(1,15)的值;
(Ⅱ)求所有的P(i,j)(1≤i<j≤15)的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别为A1,A2,左焦点为F,动直线x=m(|m|<a)与E相交于P,Q两点,A1P与A2Q的交点M的轨迹落在双曲线
x2
2
-y2=1
上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过F点的直线l与E相交A、B两点,与圆x2+y2=a2相交于C、D两点,求
|AB|
|CD|
的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为e=
2
2
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+
2
=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F1(-1,0),F2(1,0),若过F1的直线交曲线C于A、B两点,求
F2A
F2B
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆E外一点A作一条直线与圆E交于B,C两点,且AB=
1
3
AC
,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°
(1)求AF的长;
(2)求证:AD=3ED.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知F1,F2分别是椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,椭圆G与抛物线y2=-4x有一个公共的焦点,且过点(-
6
2
,1
).
(Ⅰ)求椭圆G的方程;
(Ⅱ)设点P是椭圆G在第一象限上的任一点,连接PF1,PF2,过P点作斜率为k的直线l,使得l与椭圆G有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,试证明
1
kk1
+
1
kk2
为定值,并求出这个定值;
(Ⅲ)在第(Ⅱ)问的条件下,作F2Q⊥F2P,设F2Q交l于点Q,证明:当点P在椭圆上移动时,点Q在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,且2a+b=1,则S=2
ab
-(4a2+b2) 的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C与x轴交于A(1,0),B(3,0)两点,且与直线x-y-3=0相切,则圆C的半径为
 

查看答案和解析>>

同步练习册答案