精英家教网 > 高中数学 > 题目详情

【题目】f(x)与g(x)是定义在同一区间[ab]上的两个函数,若函数yf(x)-g(x)在x[ab]上有两个不同的零点,则称f(x)和g(x)在[ab]上是“关联函数”,区间[ab]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2xm在[0,3]上是“关联函数”,则m的取值范围是 (  ).

A. B.[-1,0] C.(-∞,-2] D.

【答案】A

【解析】f(x)=x2-3x+4为开口向上的抛物线,g(x)=2xm是斜率k=2的直线,可先求出g(x)=2xmf(x)=x2-3x+4相切时的m值.由f′(x)=2x-3=2得切点为,此时m=-,因此f(x)=x2-3x+4的图象与g(x)=2xm的图象有两个交点只需将g(x)=2x向上平移即可.再考虑区间[0,3],可得点(3,4)为f(x)=x2-3x+4图象上最右边的点,此时m=-2,所以m

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:

异面直线间的距离为定值;

三棱锥的体积为定值;

异面直线与直线所成的角为定值;

二面角的大小为定值.

其中真命题有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列命题中所有正确结论的序号是______

①其图象关于轴对称; ②当时,是增函数;当时,是减函数;

的最小值是; ④在区间上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量m=(cos,sin ),n=(2+sinx,2-cos),函数m·nx∈R.

(1) 求函数的最大值;

(2) 若 =1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;

(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列中, 其前项和为.

1求数列的通项公式;

(2)设数列满足其前项和为为求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若m=0,求函数f(x)的定义域;

(2)若函数f(x)的值域为R,求实数m的取值范围;

(3)若函数f(x)在区间上是增函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案