精英家教网 > 高中数学 > 题目详情
已知函数f(x)的导数为f′(x)=4x3-4x,且f(x)的图象过点(0,-5),当函数f(x)取得极大值-5时,x的值应为( )
A.-1
B.0
C.1
D.±1
【答案】分析:因为f′(x)=4x3-4x,由求导法则可推出f(x)=x4-2x2+c,又因为f(x)的图象过点(0,-5),故可求出c的值;令f′(x)=0可求得f(x)的极值点为x=0或x=±1,然后分别代入检验即可.
解答:解:∵f′(x)=4x3-4x,
∴f(x)=x4-2x2+c,其中c为常数.
∵f(x)过(0,-5),
∴c=-5,
∴f(x)=x4-2x2-5,
由f′(x)=0,
即4x3-4x=0,
解得x=0或x=±1,
∴f(x)的极值点为x=0或x=±1,
∵x=0时,f(x)=-5.
x=1时,f(x)=-6.
x=-1时,f(x)=-6.
∴当x=0时,函数f(x)取得极大值-5.
故选B.
点评:本题考查了导数的运算法则和利用导数求函数极值的方法,难度一般.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知函数f(x)的导函数f′(x)=2x-5,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)的导数f″(x)满足0<f′(x)<1,常数a为方程f(x)=x的实数根.
(Ⅰ)若函数f(x)的定义域为M,对任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求证:方程f(x)=x存在唯一的实数根a;
(Ⅱ) 求证:当x>a时,总有f(x)<x成立;
(Ⅲ)对任意x1、x2,若满足|x1-a|<2,|x2-a|<2,求证:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则f(1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)的图象如图所示,那么(  )

查看答案和解析>>

同步练习册答案