精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=4sin2x•{sin^2}({x+\frac{π}{4}})+cos({2π-4x})$,
(1)求f(x)的最小正周期;      
(2)若$g(x)=f({x+ϕ})({-\frac{π}{2}<ϕ<\frac{π}{2}})$在x=$\frac{π}{3}$处取得最大值,求y=g(x)的单调递增区间;
(3)求(2)中y=g(x)在$x∈[{-\frac{π}{12},\frac{2π}{3}}]$上的值域.

分析 (1)利用倍角公式、同角三角函数基本关系式即可得出;
(2)g(x)=f(x+ϕ)=2sin(2x+2ϕ)+1,当$2x+2ϕ=\frac{π}{2}+2kπ$,k∈z时取得最大值,将$x=\frac{π}{3}$代入上式,得ϕ,再利用正弦函数的单调性即可得出.
(3)利用正弦函数的单调性即可得出.

解答 解:(1)$f(x)=4sin2x{sin^2}({x+\frac{π}{4}})+cos4x=4sin2x{[{\frac{{\sqrt{2}}}{2}({sinx+cosx})}]^2}+cos4x$
=2sin2x(1+sin2x)+cos4x
=2sin2x+2sin22x+cos4x
=2sin2x+1
∴最小正周期为$T=\frac{2π}{2}=π$.
(2)g(x)=f(x+ϕ)=2sin(2x+2ϕ)+1,当$2x+2ϕ=\frac{π}{2}+2kπ$,k∈z时取得最大值,
将$x=\frac{π}{3}$代入上式,得$ϕ=-\frac{π}{12}+kπ$,k∈z,
∴$ϕ=-\frac{π}{12}$,得$g(x)=2sin({2x-\frac{π}{6}})+1$,
∴$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈z,
解得$-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ$,k∈z,
∴g(x)的单调增区间为$[{-\frac{π}{6}+kπ,\frac{π}{3}+kπ}]$,k∈z
(3)由(2)得$g(x)=2sin({2x-\frac{π}{6}})+1$,由$-\frac{π}{12}≤x≤\frac{2π}{3}$,得$-\frac{π}{3}≤2x-\frac{π}{6}≤\frac{7π}{6}$,
∴$-\frac{{\sqrt{3}}}{2}≤sin({2x-\frac{π}{6}})≤1$,得$1-\sqrt{3}≤g(x)≤3$,
∴g(x)∈$[{1-\sqrt{3},3}]$.

点评 本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.(文)数列{an}的前n项和为Sn,且a1=1,对任意n∈N+,有an+1=$\frac{2}{3}$Sn,则Sn=$(\frac{5}{3})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-x-6<0},$B=\{x\left|{y=\sqrt{x-m}}\right.\}$.若A∩B≠∅,则实数m的取值范围是(  )
A.(-∞,3)B.(-2,3)C.(-∞,-2)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知奇函数f(x)在定义域(-3,3)上是减函数,且满足f(2x-1)+f(1)<0,则x的取值范围为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C:x2-(1+a)x+y2-ay+a=0,若圆C与x轴相切,则圆C的方程为${(x-1)^2}+{(y-\frac{1}{2})^2}=\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x2-(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥-1恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(I)求|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(II)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左支上一点,F1,F2分别是它的左右焦点,直线PF2与圆:x2+y2=a2相切,切点为线段PF2的中点,则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是(  )
A.4$\sqrt{3}$B.8 $\sqrt{3}$C.4$\sqrt{7}$D.8

查看答案和解析>>

同步练习册答案