精英家教网 > 高中数学 > 题目详情

如图所示,四棱锥,底面是边长为的正方形,⊥面,过点,连接
(Ⅰ)求证:
(Ⅱ)若面交侧棱于点,求多面体的体积.

(Ⅰ)略;(Ⅱ).

解析试题分析:(Ⅰ)利用线线垂直证明线面垂直;(Ⅱ)利用椎体体积公式,找高求面积.
试题解析:(Ⅰ)证明:PA⊥面ABCD,BC在面ABCD内,
∴ PA⊥BC  BA⊥BC,PA∩BA=A,∴BC⊥面PAB,
又∵AE在面PAB内∴ BC⊥AEAE⊥PB,BC∩PB="B,"
∴AE⊥面PBC又∵PC在面PBC内AE⊥PC, AF⊥PC, AE∩AF="A,"
∴PC⊥面AEF        6分
(Ⅱ) PC⊥面AEF, ∴ AG⊥PC, AG⊥DC ∴PC∩DC=C  AG⊥面PDC,
∵GF在面PDC内∴AG⊥GF△AGF是直角三角形,
由(1)可知△AEF是直角三角形,AE=AG=,EF=GF=  ∴, 又AF=,∴, PF=
     13分
考点:线面垂直的证明,体积求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为平行四边形,平面中点.

(1)求证:平面
(2)若,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,是线段的中点.
(Ⅰ)求证:平面
(Ⅱ)求平面把长方体 分成的两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得点在平面ADC上的正投影O恰好落在线段上,如图2所示,点分别为线段PC,CD的中点.

(I) 求证:平面OEF//平面APD;
(II)求直线CD与平面POF;
(III)在棱PC上是否存在一点,使得到点P,O,C,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如左图,四边形中,的中点,,将左图沿直线折起,使得二面角,如右图.
(1)证明:平面
(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是直角梯形,⊥平面SAD,点的中点,且.

(1)求四棱锥的体积;
(2)求证:∥平面
(3)求直线和平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,点在圆上,于点
平面
(1)证明:
(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 平面平面, 是以为斜边的等腰直角三角形, 分别为, , 的中点, ,

(1) 设的中点, 证明:平面
(2) 证明:在内存在一点, 使平面, 并求点, 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为正方形,
平面为棱的中点.

(1)求证:平面平面
(2)求二面角的余弦值.
(3)求点到平面的距离.

查看答案和解析>>

同步练习册答案