精英家教网 > 高中数学 > 题目详情
6.己知双曲线E的中心在原点,F(5,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(9,$\frac{9}{2}$),则E的方程为(  )
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

分析 利用点差法求出直线AB的斜率,再根据F(5,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为(9,$\frac{9}{2}$),可建立方程组,从而可求双曲线的方程.

解答 解:由题意,不妨设双曲线的方程为E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),
∵F(5,0)是E的焦点,∴c=5,∴a2+b2=25.
设A(x1,y1),B(x2,y2)则有:x1+x2=18,y1+y2=9,
A,B代入相减可得AB的斜率$\frac{2{b}^{2}}{{a}^{2}}$,
∵AB的斜率是$\frac{\frac{9}{2}-0}{9-5}$=$\frac{9}{8}$
∴$\frac{2{b}^{2}}{{a}^{2}}$=$\frac{9}{8}$,即16b2=9a2
将16b2=9a2代入a2+b2=25,可得a2=16,b2=9,
∴双曲线标准方程是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}$=1.
故选D.

点评 本题考查双曲线的标准方程,考查点差法解决弦的中点问题,考查学生的计算能力,解题的关键是利用点差法求出直线AB的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.不等式$|{x-2}|+\frac{1}{x-1}>x-2+\frac{1}{x-1}$的解集是{x|x<1或1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足a1=3,an-1+an+an+1=6(n≥2),Sn=a1+a2+…+an,则S10=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线C:y2=4x的焦点为F,准线为1,过抛物线C上的点A作准线l的垂线,垂足为M,若△AMF与△AOF(其中O为坐标原点)的面积之比为3:1,则点A的坐标为(  )
A.(2,2$\sqrt{2}$)B.(4,4)C.(4,±4)D.(2,±2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于常数m,n,“m>0,n>0”是“方程mx2-ny2=1的曲线是双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=$\frac{1}{2}$,则下列结论中正确的有(2)(3).
(1)AC⊥AE;
(2)EF∥平面ABCD;
(3)三棱锥A-BEF的体积为定值:
(4)异面直线AE,BF所成的角为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足$\frac{\sqrt{3}c}{cosC}$=$\frac{a}{cos(\frac{3π}{2}+A)}$.
(I)求C的值;
(II)若$\frac{c}{a}$=2,b=4$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等比数列{an}的前n项和为Sn,3a7=a42,a2=2a1,在等差数列{bn}中,b3=a4,b15=a5
(1)求证:Sn=2an-3
(2)求数列{$\frac{4}{(n+8){b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}中,${a_5}=\frac{π}{2}$若函数f(x)=sin2x-cosx-1,设cn=f(an),则数列{cn}的前9项和为(  )
A.0B.1C.9D.-9

查看答案和解析>>

同步练习册答案