精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的单调增区间;
(2)若x∈[0,π]时,f(x)的值域是[5,8],求a,b的值.

【答案】
(1)解:解:f(x)=a(1+cosx+sinx)+b= asin(x+ )+a+b

当a=﹣1时,由2kπ+ ≤x+ ≤2kπ+ π,得2kπ+ ≤x≤2kπ+ π,

∴f(x)的单调增区间为[2kπ+ ,2kπ+ π](k∈Z)


(2)解:∵0≤x≤π,∴ ≤x+ π,

∴﹣ ≤sin(x+ )≤1,依题意知a≠0,

分两种情况考虑:

1°当a>0时,

∴a=3( ﹣1),b=5;

2°当a<0时,

∴a=﹣3( ﹣1),b=8,

综上所述:a=3 ﹣3,b=5或a=3﹣3 ,b=8


【解析】函数f(x)解析式利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,(1)将a=﹣1代入,利用正弦函数的递增区间即可确定出f(x)的递增区间;(2)根据x的范围求出这个角的范围,确定出正弦函数的值域,根据f(x)的值域,分a小于0与大于0两种情况考虑,分别列出关于a与b的方程组,求出方程组的解即可得到a与b的值
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:,以及对二倍角的余弦公式的理解,了解二倍角的余弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面的中点 上的点且上的高.

(1)证明: 平面

2)若,求三棱锥的体积;

3)在线段上是否存在这样一点使得平面?若存在,说出点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对应的边为a,b,c
(1)若 ,求A的值;
(2)若 ,且△ABC的面积 ,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数g(x)=asinxcosx(a>0)的最大值为 ,则函数f(x)=sinx+acosx的图象的一条对称轴方程为(
A.x=0
B.x=﹣
C.x=﹣
D.x=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,6sinA+4cosB=1,且4sinB+6cosA=5 ,则cosC=(
A.
B.±
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=3sin(2x+ )的图象,只要把函数y=3sinx的图象上所有的点(
A.横坐标缩短到原来的 倍(纵坐标不变),再把所得图象所有的点向左平移 个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再把所得图象所有的点向左平移 个单位长度
C.向右平移 个单位长度,再把所得图象所有的点横坐标缩短到原来的 倍(纵坐标不变)
D.向左平移 个单位长度,再把所得图象所有的点横坐标伸长到原来的2倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项.

(1)证明:数列是等比数列;

(2)求数列的前项和为.

查看答案和解析>>

同步练习册答案