精英家教网 > 高中数学 > 题目详情
若直线x-2y+1=0与圆x2+y2-4x+2y-5=0交于A,B两点,O是坐标原点,则
OA
OB
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:直线方程和圆的方程联立形成方程组,解方程组即得A,B的坐标,从而求出
OA
OB
的坐标,进行数量积的坐标运算即可.
解答: 解:将x=2y-1带入x2+y2-4x+2y-5=0中并整理得:y2-2y=0;
∴解得y=0,或2,x=-1,或3;
∴A(-1,0),B(3,2);
OA
OB
=(-1,0)•(3,2)=-3

故答案为:-3.
点评:考查直线和圆的位置关系,通过解直线方程和圆的方程形成的方程组来求直线和圆的交点坐标的方法,由点的坐标求向量的坐标,以及向量数量积的坐标运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=g(x)与f(x)=loga(x+1)(0<a<1)的图象关于原点对称
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)函数F(x)=f(x)+g(x),解不等式F(t2-2t)+F(2t2-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD为菱形,且PD=DC=2,∠ABC=60°,
(1)求证:AC⊥面 PDB;
(2)求直线PD与平面PAC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E经过A(1,
3
2
),一个焦点坐标为(-1,0),求以P(1,
3
2
)为中点的弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足条件
x-y+5≥0
x+y≥0
x≤3

(1)求u=x2+y2的最大值与最小值;
(2)求v=
y
x-5
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
(x-3)2+y2
+
(x+3)2+y2
=10化简的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直线ax+y-a=0(a≠0),以下说法正确的是(  )
A、恒过定点,且斜率和纵截距相等
B、恒过定点,且横截距恒为定值
C、恒过定点,且与y轴平行的直线
D、恒过定点,且与x轴平行的直线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线C:
x=2cosα
y=
3
sinα
(α为参数)和定点A(0,
3
),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.
(1)求直线AF2的直角坐标方程;
(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求|MF1|-|NF1|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax,g(x)=-x2-1,若函数f(x)与g(x)有两条公切线,且由四个切点组成的多边形的周长为6.则a 的值为
 

查看答案和解析>>

同步练习册答案