【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数y与月份之间的回归直线方程+
(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;
(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?
参考公式及数据:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
科目:高中数学 来源: 题型:
【题目】已知曲线C:(5﹣m)x2+(m﹣2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1 , O2 . 动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1 , O,O2 , B五点共线),记点P运动的路程为x,设y=|O1P|2 , y与x的函数关系为y=f(x),则y=f(x)的大致图象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)在x=-2处有极值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列结论:
(1)命题 ,为真命题 ;
(2)设 ,,则 p 是 q 的充分不必要条件 ;
(3)命题:若,则或,其否命题是假命题;
(4)非零向量与满足,则与的夹角为.
其中正确的结论有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有2名男生、3名女生,在下列不同条件下,求不同的排列方法总数.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市市民用水拟实行阶梯水价,每人用水量不超过立方米的部分按元/立方米收费,超出立方米的部分按元/立方米收费,从该市随机调查了位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,
(Ⅰ)求的值及居民用水量介于的频数;
(Ⅱ)根据此次调查,为使以上居民月用水价格为元/立方米,应定为多少立方米?(精确到小数点后位)
(Ⅲ)若将频率视为概率,现从该市随机调查名居民的用水量,将月用水量不超过立方米的人数记为,求其分布列及其均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com