分析 由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin2x-$\frac{1}{2}$.由2k$π-\frac{π}{2}≤2x≤2kπ+\frac{π}{2}$,k∈Z可解得单调递增区间,由2k$π+\frac{π}{2}$$≤2x≤2kπ+\frac{3π}{2}$,k∈Z可解得单调递增区间.
解答 解:∵f(x)=sinxcosx-cos2(x+$\frac{π}{4}$)=$\frac{1}{2}$sin2x-$\frac{1+cos(2x+\frac{π}{2})}{2}$=$\frac{1}{2}$sin2x-($\frac{1}{2}$-$\frac{1}{2}$sin2x)=sin2x-$\frac{1}{2}$.
∴由2k$π-\frac{π}{2}≤2x≤2kπ+\frac{π}{2}$,k∈Z可解得单调递增区间为:[kπ$-\frac{π}{4}$,kπ$+\frac{π}{4}$]k∈Z.
由2k$π+\frac{π}{2}$$≤2x≤2kπ+\frac{3π}{2}$,k∈Z可解得单调递增区间为:[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$]k∈Z.
点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com