精英家教网 > 高中数学 > 题目详情
18.三棱柱的侧棱垂直于底面,所有的棱长都为2$\sqrt{3}$,顶点都在一个球面上,则该球的体积为(  )
A.$4\sqrt{3}π$B.$\frac{{28\sqrt{7}π}}{3}$C.$8\sqrt{6}π$D.$\frac{{32\sqrt{7}π}}{3}$

分析 由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.

解答 解:根据题意条件可知三棱柱是棱长都为2$\sqrt{3}$的正三棱柱,
设上下底面中心连线EF的中点O,则O就是球心,其外接球的半径为OA1
又设D为A1C1中点,在直角三角形EDA1中,EA1=2
在直角三角形OEA1中,OE=$\sqrt{3}$,由勾股定理得OA1=$\sqrt{7}$
∴球的体积为V=$\frac{4}{3}$π•($\sqrt{7}$)3=$\frac{28\sqrt{7}}{3}$π,
故选:B.

点评 本题考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在各项均为正数的等比数列{an}中,若a1•a19=100,则a9•a10•a11的值为1000.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=loga(a2x-4ax+4),0<a<1,则使f(x)>0的x的取值范围是(loga3,loga2)∪(loga2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集A={x|1<x<2},B={x|x<a},满足A?B,则(  )
A.a≥2B.a≤1C.a≥1D.a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点P是圆(x-1)2+y2=8上的动点,且点P不在x轴上,F1、F2为圆与x轴的两个交点,若M是∠F1PF2的角平分线上一点,且$\overrightarrow{{F}_{1}M}$$•\overrightarrow{MP}$=0,又F1M的延长线与直线PF2交于点Q,N为PQ的中点,则|$\overrightarrow{MN}$|的取值范围是(  )
A.(0,2$\sqrt{2}$)B.(0,4$\sqrt{2}$)C.(0,4)D.(2$\sqrt{2}$,4$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|2<x≤6},B={x|3<x<9}.
(1)分别求∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二项式${(\root{3}{x}-\frac{2}{x})^8}$的展开式中的常数项为112.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知$c=\sqrt{3},b=1,C={120°}$
(1)求∠B和∠A;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$y={log_{0.8}}(-{x^2}+x+6)$的单调增区间是$(\frac{1}{2},3)$.

查看答案和解析>>

同步练习册答案