【题目】已知点列为函数图像上的点,点列顺次为轴上的点,其中,对任意,点构成以为顶点的等腰三角形.
(1)证明:数列是等比数列;
(2)若数列中任意连续三项能构成三角形的三边,求的取值范围;
(3)求证:对任意,是常数,并求数列的通项公式.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,C、D两点的坐标为,曲线上的动点P满足.又曲线上的点A、B满足.
(1)求曲线的方程;
(2)若点A在第一象限,且,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市三地A,B,C有直道互通.现甲交警沿路线AB乙交警沿路线ACB同时从A地出发,匀速前往B地进行巡逻,并在B地会合后再去执行其他任务.已知AB=10km,AC=6km,BC=8km,甲的巡逻速度为5km/h,乙的巡逻速度为10km/h.
(1)求乙到达C地这一时刻的甲乙两交警之间的距离;
(2)已知交警的对讲机的有效通话距离不大于3km,从乙到达C地这一时刻算起,求经过多长时间,甲乙方可通过对讲机取得联系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.
设数列是一个首项为、公差为的无穷等差数列.
(1)若,,成等比数列,求其公比.
(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.
(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,、为椭圆的左、右焦点,为椭圆上一点,且.
(1)求椭圆的标准方程;
(2)设直线,过点的直线交椭圆于、两点,线段的垂直平分线分别交直线、直线于、两点,当最小时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆,以坐标原点为极点,轴正半轴为极轴,直线的极坐标方程为,直线交圆于两点,为中点.
(1)求点轨迹的极坐标方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个特定时段内,以点E为中心的7n mile以内海域被设为警戒水域.点E正北55n mile处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40n mile的位置B,经过40分钟又测得该船已行驶到点A北偏东(其中,)且与点A相距10n mile的位置C.
(I)求该船的行驶速度(单位:n mile /h);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com