【题目】若函数f(x)=kx2+(k﹣1)x+3是偶函数,则f(x)的递减区间是 .
【答案】(﹣∞,0]
【解析】解:∵函数f(x)=kx2+(k﹣1)x+3为偶函数,
∴f(﹣x)=f(x),
即f(﹣x)=kx2﹣(k﹣1)x+3=kx2+(k﹣1)x+3
∴﹣(k﹣1)=k﹣1,
即k﹣1=0,
解得k=1,
此时f(x)=x2+3,对称轴为x=0,
∴f(x)的递减区间是(﹣∞,0].
所以答案是:(﹣∞,0].
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数奇偶性的性质的理解,了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
科目:高中数学 来源: 题型:
【题目】已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )
A.圆
B.椭圆
C.双曲线
D.抛物线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点P0(x0 , y0)且与直线Ax+By+C=0垂直的直线方程为( )
A.Bx+Ay﹣Bx0﹣Ay0=0
B.Bx﹣Ay﹣Bx0+Ay0=0
C.Bx+Ay+Bx0+Ay0=0
D.Bx﹣Ay+Bx0﹣Ay0=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且f(0)=-1,且对任意x∈R,有f(x)=-f(2-x)成立,则f(2 017)的值为( )
A.1
B.-1
C.0
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com