精英家教网 > 高中数学 > 题目详情
1.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-6ax-1,x≤1}\\{{a}^{x}-7,x>1}\end{array}\right.$,对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则实数a的取值范围是(  )
A.($\frac{1}{3}$,1)B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(0,$\frac{1}{3}$]

分析 根据对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,可知f(x)在R上是单调减函数,可知a<1,由二次函数的性质可知:(-∞,3a)是减区间,可得3a≥1,且满足(ax-7)max≤(x2-6ax-1)min可得a的取值范围.

解答 解:定义在R上的函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-6ax-1,x≤1}\\{{a}^{x}-7,x>1}\end{array}\right.$,
对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,可知f(x)在R上是单调减函数,
可得:y=ax-7是减函数,则a<1.
由二次函数的性质可知:y=x2-6ax-1的对称轴为x=3a,其(-∞,3a)是单调减区间,
∴3a≥1,可得:a$≥\frac{1}{3}$
满足(ax-7)max≤(x2-6ax-1)min可得:a-7≤-6a
解得:a<1.
综上可得:a的取值范围是[$\frac{1}{3}$,1).
故选:B.

点评 本题考查了分段函数的单调性的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.实数x,y满足$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≥0}\\{x+y-2≤0}\end{array}\right.$,则y-4x的取值范围是(  )
A.(-∞,4]B.(-∞,7]C.[-$\frac{1}{2}$,4]D.[-$\frac{1}{2}$,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式,最新调查表明,人们对于投资理财兴趣逐步提高.某投资理财公司根据做了大量的数据调查,现有两种产品投资收益如下:
①投资A产品的收益与投资额的算术平方根成正比;
②投资B产品的收益与投资额成正比.
公司提供了投资1万元时两种产品的收益分别是0.4万元和0.2万元.
(Ⅰ)请写出两类产品的收益与投资额的函数关系式;
(Ⅱ)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金才能让你的收益最大?最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={a,1},B={a2,0},那么“a=-1”是“A∩B≠∅”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在Rt△ABC中,∠A=90°,点D是边BC上的动点,且|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),则当λμ取得最大值时,|$\overrightarrow{AD}$|的值为(  )
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆锥的底面积为3π,高为3,则该圆锥的外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=ln(x+a)-sinx.给出下列命题:
①当a=0时,?x∈(0,e),都有f(x)<0;
②当a≥e时,?x∈(0,+∞),都有f(x)>0;
③当a=1时,?x0∈(2,+∞),使得f(x0)=0.
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某调查者从调查中获知某公司近年来科研费支出(xi) 用与公司所获得利润(yi)的统计资料如表:
科研费用支出(xi)与利润(yi)统计表   单位:万元
年份科研费用支出(xi利润(yi
2011
2012
2013
2014
2015
2016
5
11
4
5
3
2
31
40
30
34
25
20
合计30180
(1)由散点图可知,科研费用支出与利润线性相关,试根据以上数据求出y关于x的回归直线方程;
(2)当x=xi时,由回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$得到的函数值记为$\stackrel{∧}{{y}_{i}}$,我们将ε=|$\stackrel{∧}{{y}_{i}}$-yi|称为误差;
在表中6组数据中任取两组数据,求两组数据中至少有一组数据误差小于3的概率;
参考公式:用最小二乘法求线性回归方程的系数公式:
$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-}\overline y)}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若在C上存在一点P,使得|PO|=$\frac{1}{2}$|F1F2|(O为坐标原点),且直线OP的斜率为$\sqrt{3}$,则,双曲线C的离心率为$\sqrt{3}$+1.

查看答案和解析>>

同步练习册答案