精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为,( 为参数),以为极点, 轴的正半轴建立极坐标系,曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点

)求曲线的普通方程及的直角坐标方程;

)在极坐标系中, 是曲线的两点,求的值.

【答案】(1) .(2)

【解析】试题分析:题设给出了曲线的参数方程,利用消去参数就能得到的普通方程,它为椭圆方程.对于曲线题设只给出了圆心的位置和圆上一点,根据它们可以到圆心的坐标和半径,从而可得圆的直角坐标方程.在(2)中,因为两点的极角相差,故先求出的极坐标方程,得到极径与极角的关系,即可求出和为.

解析:(1) 曲线的参数方程为为参数),则普通方程为

曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点,所以曲线在直角坐标系中的圆心为,半径为,其普通方程为.

(2)曲线的极坐标方程为,所以,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程选讲

在直角坐标系中,曲线C1的参数方程为(a为参数),以原点O为极点,

以x轴正半轴为极轴,建立极坐标系,曲 线C2的极坐标方程为

(1)求曲线C1的普通方程与曲线C2的直角坐标方程.

(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.

(1)求该学生进入省队的概率.

(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的快速发展,民用汽车的保有量也迅速增长.机动车保有量的发展影响到环境质量、交通安全、道路建设等诸多方面.在我国,尤其是大中型城市,机动车已成为城市空气污染的重要来源.因此,合理预测机动车保有量是未来进行机动车污染防治规划、道路发展规划等的重要前提.从2012年到2016年,根据“云南省某市国民经济和社会发展统计公报”中公布的数据,该市机动车保有量数据如表所示.

年份

2012

2013

2014

2015

2016

年份代码

1

2

3

4

5

机动车保有量(万辆)

169

181

196

215

230

(1)在图所给的坐标系中作出数据对应的散点图;

(2)建立机动车保有量关于年份代码的回归方程;

(3)按照当前的变化趋势,预测2017年该市机动车保有量.

附注:回归直线方程中的斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个数列{an},在这个数列里,任取m(m≥3mN*)项,并且不改变它们在数列{an}中的先后次序,得到的数列称为数列{an}的一个m阶子数列.已知数列{an}的通项公式为an (nN*a为常数),等差数列a2a3a6是数列{an}的一个3阶子数列

1)求a的值;

2)等差数列b1b2bm{an}的一个m (m≥3mN*) 阶子数列,且b1 (k为常数,kN*k≥2),求证:mk1

3等比数列c1c2cm{an}的一个m (m≥3mN*) 阶子数列

求证:c1c2cm≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角ABC所对的边分别为abc,满足

(1)求角C的大小;

(2)设函数f(x)=cos(2xC),将f(x)的图象向右平移个单位长度后得到函数g(x)的图象,求函数g(x)在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知动圆过定点且与轴截得的弦的长为

)求动圆圆心的轨迹的方程;

)已知点,动直线和坐标轴不垂直,且与轨迹相交于两点,试问:在轴上是否存在一定点,使直线过点,且使得直线,的斜率依次成等差数列?若存在,请求出定点的坐标;否则,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列为递增的等比数列,

数列满足

(Ⅰ)求数列的通项公式;(Ⅱ)求证: 是等差数列;

(Ⅲ)设数列满足,且数列的前项和,并求使得对任意都成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是边长为的正方形,平面与平面所成角为

Ⅰ)求证:平面

Ⅱ)求二面角的余弦值.

Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

同步练习册答案