已知曲线上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线的轨迹方程;
(2)若过点引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
【解析】第一问利用(1)过点作直线
的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,;,化简得
第三问点N与点M关于X轴对称,设,, 不妨设
.
由于点M在椭圆C上,所以.
由已知,则
,
由于,故当
时,
取得最小值为
.
计算得,,故
,又点
在圆
上,代入圆的方程得到
.
故圆T的方程为:
科目:高中数学 来源:2012届浙江省台州中学高三上学期第一次统练理科数学 题型:解答题
(本题满分10分)已知曲线上的动点
满足到点
的距离比到直线
的距离小
.
(1)求曲线的方程;
(2)动点在直线
上,过点
作曲线
的切线
,切点分别为
、
.
(ⅰ)求证:直线恒过一定点,并求出该定点的坐标;
(ⅱ)在直线上是否存在一点
,使得
为等边三角形(
点也在直线
上)?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年海南省琼海市高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为
、
且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线
的距离。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源:2013届浙江省高二12月阶段性检测文科数学试卷 题型:解答题
已知平面上的动点到定点
的距离与它到定直线
的距离相等
(1)求动点的轨迹
的方程
(2)过点作直线
交
于
两点(
在第一象限),若
,求直线
的方程
(3)试问在曲线上是否存在一点
,过点
作曲线
的切线
交抛物线
于
两点,使得
?若存在,求出点
的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为
、
且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线
的距离。(O为坐标原点)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com