精英家教网 > 高中数学 > 题目详情
(2012•武汉模拟)已知直线l:Ax+By+C=0(A,B不全为0),两点P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)(Ax2+By2+C)>0,且|Ax1+By1+C|>|Ax2+By2+C|,则(  )
分析:利用题中条件:(1)(Ax1+By1+C)(Ax1+By1+C)>0的含义:点在直线的同侧;(2)|Ax1+By1+C|>|Ax2+By2+C|的含义:点到直线的距离的大小关系.即可得出答案.
解答:解:∵(Ax1+By1+C)(Ax2+By2+C)>0,表示两点在直线的同一旁,
又∵|Ax1+By1+C|>|Ax1+By1+C|表示P1到直线距离大于P2的距离所以P1P2直线不会与直线平行(否则距离相等),
并且P2距离小,所以在线段P1P2方向的延长线上会与直线相交,看看答案选C.
故选C.
点评:本题就是考查线性规划问题、点到直线的距离公式、二元一次不等式(组)与平面区域等基础知识,考查运算求解能力,考查数形结合思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
据此估计,这三天中恰有两天下雨的概率近似为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)F1、F2是双曲线
x2
16
-
y2
20
=1
的焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P到焦点F2的距离等于
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)已知函数f(x)=
lnx
x
-1

(1)求函数f(x)的单调区间;
(2)设m>0,求函数f(x)在[m,2m]上的最大值;
(3)证明:对?n∈N*,不等式ln(
2+n
n
)<
2+n
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)若复数z满足(2-i)z=1+i(i为虚数单位),则复数z在复平面内对应的点的坐标为
1
5
3
5
1
5
3
5

查看答案和解析>>

同步练习册答案