精英家教网 > 高中数学 > 题目详情

已知函数:f(x)=lnx-ax-3(a≠0)
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],若函数数学公式在区间(a,3)上有最值,
求实数m的取值范围.

解:(Ⅰ)由已知得f(x)的定义域为(0,+∞),且,(2分)
当a>0时,f(x)的单调增区间为,减区间为
当a<0时,f(x)的单调增区间为(0,+∞),无减区间;(6分)
(Ⅱ),∴g'(x)=3x2+(m+2a)x-1,
∵g(x)在区间(a,3)上有最值,
∴g(x)在区间(a,3)上总不是单调函数,
(9分)
由题意知:对任意a∈[1,2],g'(a)=3a2+(m+2a)•a-1=5a2+ma-1<0恒成立,∴,因为a∈[1,2],所以∴
对任意a∈[1,2],g'(3)=3m+26+6a>0恒成立,∴(12分)
分析:(Ⅰ)对f(x)求导,,分a>0,a<0两种情况写出函数的单调区间;
(Ⅱ)对函数g(x)求导得g'(x)=3x2+(m+2a)x-1,根据g(x)在区间(a,3)上有最值,得到g(x)在区间(a,3)上总不是单调函数,从而得到,另由对任意a∈[1,2],g'(a)=3a2+(m+2a)•a-1=5a2+ma-1<0恒成立,分离参数即可求得实数m的取值范围.
点评:此题是个中档题.考查利用导数研究函数的单调性和最值问题,体现了对分类讨论和化归转化数学思想的考查,特别是问题(II)的设置很好的考查学生对题意的理解与转化,创造性的分析问题、解决问题的能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f-1(ax)互为反函数,则称y=f(x)满足“a积性质”.
(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;
(2)求所有满足“2和性质”的一次函数;
(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示,则方程f[g(x)]=0有且仅有
6
个根;方程f[f(x)]=0有且仅有
5
个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为
5
4
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则y=f(x)的图象关于直线x=1对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③若y=f(x)为偶函数,且y=f(2+x)=-f(x),则y=f(x)的图象关于直线x=2对称;
④若y=f(x)为奇函数,且f(x)=f(-x-2),则y=f(x)的图象关于直线x=1对称.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是奇函数,当x>0时,f(x)=x3+1.设f(x)的反函数是y=g(x),则g(-28)=
-3
-3

查看答案和解析>>

同步练习册答案