【题目】在平面直角坐标系中,设M、N、T是圆C:(x﹣1)2+y2=4上不同三点,若存在正实数a,b,使 =a +b ,则 的取值范围为 .
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x 使不等式2f(x)≥g(x)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆M的对称轴为坐标轴,离心率为,且一个焦点坐标为(,0).
(1)求椭圆M的方程;
(2)设直线l与椭圆M相交于A,B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点,求点O到直线l的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆以,为焦点,且离心率
(1)求椭圆的方程;
(2)过点斜率为的直线与椭圆有两个不同交点、,求的范围;
(3)设椭圆与轴正半轴、轴正半轴的交点分别为、,是否存在直线,满足(2)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.
(1)求椭圆C的标准方程;
(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B、C、D为平面四边形ABCD的四个内角.
(1)证明:tan ;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com