精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,设M、N、T是圆C:(x﹣1)2+y2=4上不同三点,若存在正实数a,b,使 =a +b ,则 的取值范围为

【答案】(2,+∞)
【解析】解:由题意,圆的位置不影响向量的大小,
可设 =(2cosθ,2sinθ), =(2cosα,2sinα), =(2cosβ,2sinβ),
=a +b
∴cosθ=acosα+bcosβ,sinθ=asinα+bsinβ,
平方相加,可得1=a2+b2+2abcos(α﹣β)<(a+b)2
∴a+b>1,
∴a3+ab2=a(a2+b2)=a[1﹣2abcos(α﹣β)]>a(1﹣2ab),
>2,
的取值范围为(2,+∞).
所以答案是:(2,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x 使不等式2f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M的对称轴为坐标轴,离心率为,且一个焦点坐标为(,0).

(1)求椭圆M的方程;

(2)设直线l与椭圆M相交于A,B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M,O为坐标原点,求点O到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为焦点,且离心率

(1)求椭圆的方程;

(2)过点斜率为的直线与椭圆有两个不同交点,求的范围;

(3)设椭圆轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(2)中的条件且使得向量垂直?如果存在,写出的方程;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,∠ABC的对边分别为, , ,若,

(1)求∠B的大小;

(2) ,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.

(1)求椭圆C的标准方程;

(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B、C、D为平面四边形ABCD的四个内角.

(1)证明:tan
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[﹣ ]上的函数f(x)=1+sinxcos2x,在x=θ时取得最小值,则sinθ=

查看答案和解析>>

同步练习册答案