分析 (1)连接B1D1,则∠D1B1N是B1N与平面A1B1C1D1所成角;
(2)∠MA1D是异面直线A1M与B1C所成的角(或补角),利用余弦定理求解即可;
(3)三棱锥M-A1B1C1的体积=$\frac{1}{3}×\frac{1}{2}×{B}_{1}{A}_{1}×{B}_{1}{C}_{1}×\frac{1}{2}B{B}_{1}$,即可得出结论.
解答 解:(1)连接B1D1,则∠D1B1N是B1N与平面A1B1C1D1所成角,
∴D1N=a,B1D1=$\sqrt{2}$a,
∴tan∠D1B1N=$\frac{\sqrt{2}}{2}$,
∴B1N与平面A1B1C1D1所成角为arctan$\frac{\sqrt{2}}{2}$;
(2)∵A1D∥B1C
∴∠MA1D是异面直线A1M与B1C所成的角(或补角),
∵MA1=$\sqrt{2}$a,A1D=$\sqrt{5}$a,MD=$\sqrt{3}$a,
∴cos∠MA1D=$\frac{2{a}^{2}+5{a}^{2}-3{a}^{2}}{2×\sqrt{2}a×\sqrt{5}a}$=$\frac{\sqrt{10}}{5}$,
∴异面直线A1M与B1C所成的角为arccos$\frac{\sqrt{10}}{5}$;
(3)∵正四棱柱ABCD-A1B1C1D1的体积为V,
∴三棱锥M-A1B1C1的体积=$\frac{1}{3}×\frac{1}{2}×{B}_{1}{A}_{1}×{B}_{1}{C}_{1}×\frac{1}{2}B{B}_{1}$=$\frac{1}{12}$V.
点评 本题考查线面角,异面直线A1M与B1C所成的角,三棱锥M-A1B1C1的体积,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 14斛 | B. | 22斛 | C. | 36斛 | D. | 66斛 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$或$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{2}$,2) | B. | (1,5) | C. | (2,3) | D. | (3,5) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com