精英家教网 > 高中数学 > 题目详情

【题目】已知ABC中,角ABC所对的边分别为abc,若(2bccosAacosC

1)求角A

2)若ABC的外接圆面积为π,求ABC的面积的最大值.

【答案】1A2

【解析】

1)化边为角,利用两角和正弦公式,即可求解;

2)由正弦定理求出和角应用余弦定理建立关系,再由基本不等式求出最大值,即可求出结论.

1)∵(2bccosAacosC

∴由正弦定理可得:(2sinBsinCcosAsinAcosC

可得:2sinBcosAsinAcosC+sinCcosAsinB

sinB≠0,∴cosA,∵0Aπ,∴A

2)∵△ABC的外接圆面积为π

∴△ABC的外接圆半径为1,∵,∴a

∵由余弦定理可得a2b2+c22bccosA

可得3b2+c2bc≥2bcbcbc

bc≤3,当且仅当bc等号成立,

SABCbcsinA,当且仅当bc等号成立,

SABC的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是由个有序实数构成的一个数组,记作:.其中称为数组的“元”,称为的下标,如果数组中的每个“元”都是来自数组中不同下标的“元”,则称的子数组.定义两个数组的关系数为.

1)若,设的含有两个“元”的子数组,求的最大值;

2)若,且的含有三个“元”的子数组,求的最大值;

3)若数组中的“元”满足,设数组含有四个“元”,且,求的所有含有三个“元”的子数组的关系数)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

1)证明:

2)若点在线段上,且直线与平面所成角的正弦值为,求直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

某投资公司在2010年年初准备将1000万元投资到低碳项目上,现有两个项目供选择:

项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利,也可能亏损,且这两种情况发生的概率分别为

项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利,可能亏损,也可能不赔不赚,且这三种情况发生的概率分别为

)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;

)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=xlnx-a有两个零点,则实数a的取值范围为(  )

A.[0)B.(0)

C.(0,]D.(-,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为,(t为参数)以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2sinθ

1)求直线l的普通方程及曲线C的直角坐标方程;

2)直线lx轴交于点P,与曲线C交于AB两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如图,已知椭圆E的左、右顶点分别为,上、下顶点分别为.设直线倾斜角的余弦值为,圆与以线段为直径的圆关于直线对称.

1)求椭圆E的离心率;

2)判断直线与圆的位置关系,并说明理由;

3)若圆的面积为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设θ[0π],且fθ1,求θ的值;

2)在ABC中,AB1fC1,且ABC的面积为,求sinA+sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2x+3|+|2x1|

1)求不等式fx≤6的解集;

2)若关于x的不等式fx)<|m1|的解集非空,求实数m的取值范围.

查看答案和解析>>

同步练习册答案