精英家教网 > 高中数学 > 题目详情

【题目】如下图,在平面直角坐标系xOy中,点A(0,3),直线ly=2x-4.设圆C的半径为1,圆心在l.

(1)若圆心C也在直线yx-1上,过点A作圆C的切线,求切线的方程;

(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

【答案】(1)y=33x+4y-12=0;(2)

【解析】试题分析:(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线上可设圆的方程为,由可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.

试题解析:(1)由得圆心

的半径为1

的方程为:

显然切线的斜率一定存在,设所求圆的切线方程为,即

所求圆的切线方程为

2的圆心在直线上,所以,设圆心

则圆的方程为

,则,整理得,设为圆

所以点应该既在圆上又在圆上,即圆和圆有交点,

,得

,得

综上所述,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:

时间长(小时)

女生人数

4

11

3

2

0

男生人数

3

17

6

3

1

(1)求这50名学生本周使用手机的平均时间长;

(2)时间长为的7名同学中,从中抽取两名,求其中恰有一个女生的概率;

(3)若时间长为被认定“不依赖手机”,被认定“依赖手机”,根据以上数据完成列联表:

不依赖手机

依赖手机

总计

女生

男生

总计

能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为,上顶点为,离心率 为坐标原点,圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知四边形内接于椭圆.记直线的斜率分别为,试问是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某石化集团获得了某地深海油田区块的开采权.集团在该地区随机初步勘探了部分几口井.取得了地质资料,进入全面勘探时期后.集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高.如果新设计的井位与原有井位重合或接近.便利用旧并的地质资料.不必打这日新并,以节约勘探费与用,勘探初期数据资料见如表:

井号

坐标

钻探深度

出油量

(参考公式和计算结果:).

号旧井位置线性分布,借助前组数据求得回归直线方程为,求的值.

)现准备勘探新井,若通过号井计算出的的值(精确到)相比于()中的,值之差不超过.则使用位置最接近的已有旧井.否则在新位置打开,请判断可否使用旧井?

)设出油量与勘探深度的比值不低于的勘探井称为优质井,那么在原有口井中任意勘探口井,求勘探优质井数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的直角坐标方程是为参数).

(Ⅰ)将曲线的参数方程化为普通方程;

(Ⅱ)求曲线与曲线交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.

(1)求椭圆E的方程及点T的坐标;

(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P,证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,的中点,.

(1)求证:平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的极值;

(2)若有两个不同的极值点 ,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin 2x-cos2x-,xR

(1)求函数f(x)的最小值和最小正周期;

(2)设ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值

查看答案和解析>>

同步练习册答案