分析 (1)求出函数的导数,得到关于a,b的方程组,求出a,b的值,检验即可;
(2)根据函数的单调性求出${{x}_{2}}^{2}$-${{x}_{1}}^{2}$=${{x}_{2}}^{2}$-lnx2+1,令h(x)=x2-lnx+1(x≥e),求出h(x)的最小值,从而求出答案即可.
解答 解:(1)由已知y=f(x)--$\frac{3}{2}$x2=ax3-$\frac{3}{2}$x2+bx,
得y′=3ax2-3x+b,
由题意得$\left\{\begin{array}{l}{3a-3+b=0}\\{12a-6+b=0}\end{array}\right.$,解得a=$\frac{1}{3}$,b=2,
经检验,所求a,b满足题意;
(2)由(1)得f(x)=$\frac{1}{3}$x3+2x,f′(x)=x2+2,
又g′(x)=lnx,由f′(x1)-g′(x2)=1得${{x}_{1}}^{2}$+2-lnx2=1,
∴${{x}_{1}}^{2}$+1=lnx2,
由于${{x}_{1}}^{2}$+1=lnx2⇒lnx2≥1⇒x2≥e,
那么${{x}_{2}}^{2}$-${{x}_{1}}^{2}$=${{x}_{2}}^{2}$-lnx2+1,
令h(x)=x2-lnx+1(x≥e),
则h′(x)=$\frac{{2x}^{2}-1}{x}$>0,
∴函数h(x)在[e,+∞)递增,
于是h(x)min=h(e)=e2,
x22-x12是存在最小值为e2.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数极值的意义,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com