精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+bx2+1
在点M(1,f(1))
处的切线方程为x-y-1=0.
(I)求f(x)的解析式;
(II)设函数g(x)=lnx,证明:g(x)≥f(x)对x∈[1,+∞)恒成立.
分析:(Ⅰ)把切点代入切线方程可得a+b=0,再根据导数的几何意义可得f(1)=1,又得到关于a、b的方程,联立解出即可.
(Ⅱ)把要证lnx≥
2x-2
x2+1
在[1,+∞)上恒成立,等价转化为即证x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立.进而利用导数求出函数h(x)=x2lnx+lnx-2x+2的最小值大于0即可.
解答:(Ⅰ)解:将x=1代入切线方程x-y-1=0,得y=0,∴f(1)=0.
f(1)=
a+b
2
,化简得a+b=0.            
f′(x)=
a(x2+1)-(ax+b)•2x
(1+x2)2
f′(1)=
2a-2(a+b)
4
=
-2b
4
=
-b
2
=1
.   
解得a=2,b=-2,
f(x)=
2x-2
x2+1
.  
(Ⅱ)证明:要证lnx≥
2x-2
x2+1
在[1,+∞)上恒成立,
即证(x2+1)lnx≥2x-2在[1,+∞)上恒成立,
即证x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立.
设h(x)=x2lnx+lnx-2x+2,则h′(x)=2xlnx+x+
1
x
-2

∵x≥1,∴2xlnx≥0,x+
1
x
≥2
,即h'(x)≥0.
∴h(x)在[1,+∞)上x∈[1,+∞)单调递增,h(x)≥h(1)=0
∴g(x)≥f(x)在上恒成立.
点评:掌握利用导数的几何意义求切线的斜率及求函数的单调性是解题关键,必须熟练解出,并学会将问题进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案