精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象关于直线对称,则(

A.函数为奇函数

B.函数上单调递增

C.,则的最小值为

D.函数的图象向右平移个单位长度得到函数的图象

【答案】AC

【解析】

先根据对称轴可得,,代入判断函数奇偶性进而判断选项A;先求出的单调增区间,再判断是否为其子集来判断B;将问题转化为符合条件的区间至少包含一个最大值,一个最小值,即需包含半个周期,即可判断C;根据图像变换规则判断D即可

因为直线的对称轴,

所以,,

,,,

对于选项A,,因为,所以为奇函数,A正确;

对于选项B,,,,当单调递增,B错误;

对于选项C,,最小为半个周期,,C正确;

对于选项D,函数的图象向右平移个单位长度,,D错误

故选:AC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,是边长为2的等边三角形,的中位线,为线段的中点.

1)证明:.

2)若二面角为直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《环境空气质量指数技术规定(试行)》规定:空气质量指数在区间时,其对应的空气质量状况分别为优、良、轻度污染、中度污染、重度污染、严重污染.如图为某市2019101日至107日的空气质量指数直方图,在这7天内,下列结论正确的是( )

A.4的方差小于后3的方差

B.7天内空气质量状况为严重污染的天数为3

C.7天的平均空气质量状况为良

D.空气质量状况为优或良的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:

时间(分钟)

10

20

30

40

50

60

70

80

90

100

答对人数

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

时间与答对人数的散点图如图:

附:,对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:.请根据表格数据回答下列问题:

1)根据散点图判断,,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果,建立的回归方程;(数据保留3位有效数字)

3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,求的切线方程;

2)若对任意时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

,使得不等式成立,试求实数的取值范围;

)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,过作直线与椭圆交于两点,的周长为8

1)求椭圆的标准方程;

2)问:的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4:坐标系与参数方程)

在直角坐标系中,半圆C的参数方程为为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系.

)求C的极坐标方程;

)直线的极坐标方程是,射线OM与半圆C的交点为OP,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:

如果:尺寸数据在内的零件为合格品,频率作为概率.

(1)从产品中随机抽取件,合格品的个数为,求的分布列与期望:

(2)为了提高产品合格率,现提出两种不同的改进方案进行试验,若按方案进行试验后,随机抽取件产品,不合格个数的期望是:若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?

查看答案和解析>>

同步练习册答案