精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,平面侧面,且.

1)求证:

2)若,求锐二面角的大小.

【答案】1)证明过程详见解析;(2

【解析】

1)连接,由已知可得四边形为正方形,则有,由面面垂直可证平面,再证平面,即可得证结论.

2)建立空间直角坐标系,利用空间向量坐标运算求出二面角的余弦值,即可求得答案.

1)如图,连接

因为在直三棱柱中,平面,

所以,,所以四边形为正方形,

所以,又因为平面侧面

平面侧面,侧面

所以平面,所以.

又由平面可得,

所以 平面,所以.

2)由(1)知,平面,

如图,以为原点,以分别为轴,轴,

轴的正向建立空间直角坐标系.

因为

则有,,,,

所以,,

设向量是平面的法向量,

,所以

,则是平面的一个法向量.

设向量是平面的法向量,

,所以

,则是平面的一个法向量.

因为,

设锐二面角的平面角为,则

所以,所以锐二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数

1)设函数的定义域为A

①若,求实数c的值.

②若,求M的最小值

2)若,对任意的,存在,使得不等式成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求的单调区间

(2)讨论零点的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,

方案一:每满200元减50元;

方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)

红球个数

3

2

1

0

实际付款

半价

7折

8折

原价

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;

(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人站成两排队列,前排人,后排.

1)一共有多少种站法;

2)现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,求有多少种不同的加入方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知中心在坐标原点O的椭圆C经过点A23),且点F2.0)为其右焦点.

)求椭圆C的方程;

)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OAL的距离等于4?若存在,求出直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).

根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差 ()具有线性相关关系.

(1)求绿豆种子出芽数 (颗)关于温差 ()的回归方程

(2)假如4月1日至7日的日温差的平均值为11,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)图象上两个相邻的最值点为

1)求函数的解析式;

2)求函数在区间上的对称中心、对称轴;

3)将函数图象上每一个点向右平移个单位得到函数,令,求函数在区间上的最大值,并指出此时x的值.

查看答案和解析>>

同步练习册答案