精英家教网 > 高中数学 > 题目详情
6.曲线y=$\frac{ax}{x-2}$在点(1,-a)处的切线经过点P(2,-3),则a等于(  )
A.1B.-2C.2D.-1

分析 求出导数,求得切线的斜率,再由两点的斜率公式,计算即可得到所求值.

解答 解:y=$\frac{ax}{x-2}$的导数为y′=-$\frac{2a}{(x-2)^{2}}$,
则曲线在点(1,-a)处的切线斜率为-2a,
由切线经过点P,可得-2a=$\frac{a-3}{2-1}$,
解得a=1.
故选A.

点评 本题考查导数的运用:求切线的斜率,同时考查两点的斜率公式,正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线y=$\sqrt{3}$x与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右两支分别交于M、N两点,与双曲线C的右准线交于P点,F是双曲线C的右焦点O是坐标原点,若|FO|=|MO|,则$\frac{|NP|}{|MP|}$等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,短轴上端点为E,M(0,1)为线段OE的中点.
(1)求椭圆Γ的方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若kAC•kBD=-$\frac{{b}^{2}}{{a}^{2}}$.
(i)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最值;
(ii)求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项公式为an=1g($\sqrt{{n}^{2}+1}$-n),判断数列{an}是否为单调数列,如是,请说明{an}的单调性;如不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长是短轴长的$\sqrt{3}$倍,原点到直线A(a,0),B(0,-b)的距离是$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程;
(2)求实数m,使直线y=x+m交椭圆于不同的点C,D,并且以CD为直径的圆经过B点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆的标准方程:
(Ⅱ)过椭圆焦点F的直线l交椭圆于A、B两点.
(1)若F是右焦点,y轴上一点M(0,$\frac{1}{3}$)满足|MN|=|MB|,求直线1斜率k的值;
(2)若F是左焦点,设过点F且不与坐标轴垂直的直线1交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)在(-∞,+∞)上是偶函数,且f(x)在(-∞,0)上是减函数,试比较f(-$\frac{3}{4}$)与f(a2-a+1)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,b>0,c>0.
(1)若a+b=2,求证:ab($\sqrt{a}$+$\sqrt{b}$)≤2;
(2)若abc(a+b+c)=1,求(a+b)(b+c)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列结论中:
①若(x,y)在映射f的作用下的象是(x+2y,2x-y),则在映射f下,(3,1)的原象为(1,1);
②若函数f(x)满足f(x-1)=f(x+1),则f(x)的图象关于直线x=1对称;
③函数y=|3-x2|-a(a∈R)的零点个数为m,则m的值不可能为1;
④函数f(x)=log2(3x2-ax+5)在(-1,+∞)上是增函数,则实数a的取值范围是[-8,-6].
其中正确结论的序号是①③④(请将所有正确结论的序号都填上)

查看答案和解析>>

同步练习册答案