精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线=1(a>0,b>0)的右焦点为F,P,Q为双曲线上关于原点对称的两点,若=0,且∠POF<,则该双曲线的离心率的取值范围为______

【答案】

【解析】

运用三角函数的定义可得|PF|2csinPQF|QF|2ccosPQF,取左焦点F',连接PF'QF',可得四边形PFQF'为矩形,由双曲线的定义和矩形的性质,可得﹣2csinPQF+2ccosPQF2a,由离心率公式,即可得到所求值.

0,可得PFQF,在RtPQF中,|OF|c,∴|PQ|2c,∠POF0<∠PQF,可得|PF|2csinPQF|QF|2ccosPQF,取左焦点F',连接PF'QF',可得四边形PFQF'为矩形,∴||QF||PF|||PF'||PF|=﹣2csinPQF+2ccosPQF2a,∴e∈(1).

故答案为:(1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)若直线不经过第四象限,求的取值范围;

(2)若直线轴负半轴于,交轴正半轴于,求的面积的最小值并求此时直线的方程;

(3)已知点,若点到直线的距离为,求的最大值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳组的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

1)补全频率分布直方图,并求的值;

2)求年龄段人数的中位数和众数;

3)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求出的值;

(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数是(  )

①若“p∨q”为真命题,则“p∧q”为真命题;

②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;

③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;

④“x∈R,≥0”的否定为“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.

(1)求证:EF∥平面PAB;

(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体, , ,且两两垂直.给出下列四个命题:

①三棱锥的体积为定值;

②经过四点的球的直径为;

③直线∥平面

④直线所成的角为

其中真命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试用恰当的方法表示下列集合.

1)使函数有意义的x的集合;

2)不大于12的非负偶数;

3)满足不等式的解集;

4)由大于10小于20的所有整数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称回归数列

项和为的数列是否是回归数列?并请说明理由.通项公式为的数列是否是回归数列?并请说明理由;

)设是等差数列,首项,公差,若回归数列,求的值.

)是否对任意的等差数列,总存在两个回归数列,使得成立,请给出你的结论,并说明理由.

查看答案和解析>>

同步练习册答案