【题目】已知双曲线=1(a>0,b>0)的右焦点为F,P,Q为双曲线上关于原点对称的两点,若=0,且∠POF<,则该双曲线的离心率的取值范围为______.
【答案】
【解析】
运用三角函数的定义可得|PF|=2csin∠PQF,|QF|=2ccos∠PQF,取左焦点F',连接PF',QF',可得四边形PFQF'为矩形,由双曲线的定义和矩形的性质,可得﹣2csin∠PQF+2ccos∠PQF=2a,由离心率公式,即可得到所求值.
0,可得PF⊥QF,在Rt△PQF中,|OF|=c,∴|PQ|=2c,∠POF,0<∠PQF,可得|PF|=2csin∠PQF,|QF|=2ccos∠PQF,取左焦点F',连接PF',QF',可得四边形PFQF'为矩形,∴||QF|﹣|PF||=|PF'|﹣|PF|=﹣2csin∠PQF+2ccos∠PQF=2a,∴e∈(1,).
故答案为:(1,).
科目:高中数学 来源: 题型:
【题目】已知直线.
(1)若直线不经过第四象限,求的取值范围;
(2)若直线交轴负半轴于,交轴正半轴于,求的面积的最小值并求此时直线的方程;
(3)已知点,若点到直线的距离为,求的最大值并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳组的人数 | 占本组的频率 |
第一组 | 120 | 0.6 | |
第二组 | 195 | ||
第三组 | 100 | 0.5 | |
第四组 | 0.4 | ||
第五组 | 30 | 0.3 | |
第六组 | 15 | 0.3 |
(1)补全频率分布直方图,并求,,的值;
(2)求年龄段人数的中位数和众数;
(3)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求出的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,真命题的个数是( )
①若“p∨q”为真命题,则“p∧q”为真命题;
②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;
③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;
④“x∈R,≥0”的否定为“R,<0”.
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.
(1)求证:EF∥平面PAB;
(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体, , ,且两两垂直.给出下列四个命题:
①三棱锥的体积为定值;
②经过四点的球的直径为;
③直线∥平面;
④直线所成的角为;
其中真命题的个数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】试用恰当的方法表示下列集合.
(1)使函数有意义的x的集合;
(2)不大于12的非负偶数;
(3)满足不等式的解集;
(4)由大于10小于20的所有整数组成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称是“回归数列”.
()①前项和为的数列是否是“回归数列”?并请说明理由.②通项公式为的数列是否是“回归数列”?并请说明理由;
()设是等差数列,首项,公差,若是“回归数列”,求的值.
()是否对任意的等差数列,总存在两个“回归数列”和,使得成立,请给出你的结论,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com