精英家教网 > 高中数学 > 题目详情
18.已知A,B为圆C:(x-m)2+(y-n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足$|\overrightarrow{CA}+\overrightarrow{CB}|=2\sqrt{5}$,则|AB|=4.

分析 求得圆的圆心和半径,运用向量的减法运算和数量积的性质:向量模的平方即为向量的平方,求得|$\overrightarrow{CA}$+$\overrightarrow{CB}$|2+|$\overrightarrow{AB}$|2=36,即可得到所求值.

解答 解:由圆C:(x-m)2+(y-n)2=9可得,
圆心C(m,n),半径为3,
由题意可得|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=3,
由|$\overrightarrow{CA}$+$\overrightarrow{CB}$|2+|$\overrightarrow{AB}$|2=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|2+|$\overrightarrow{CA}$-$\overrightarrow{CB}$|2
=$\overrightarrow{CA}$2+$\overrightarrow{CB}$2+2$\overrightarrow{CA}$•$\overrightarrow{CB}$+$\overrightarrow{CA}$2+$\overrightarrow{CB}$2-2$\overrightarrow{CA}$•$\overrightarrow{CB}$
=2($\overrightarrow{CA}$2+$\overrightarrow{CB}$2)=2(32+32)=36,
由$|\overrightarrow{CA}+\overrightarrow{CB}|=2\sqrt{5}$,可得|$\overrightarrow{AB}$|2=16,
即有|$\overrightarrow{AB}$|=4.
故答案为:4.

点评 本题考查圆的方程的运用,考查向量的数量积的性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数z=x+y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(-x)≠-f(x),则称该函数是“X-函数”.
(Ⅰ)分别判断下列函数:①y=2x;②y=x+1; ③y=x2+2x-3是否为“X-函数”?(直接写出结论)
(Ⅱ)若函数f(x)=sinx+cosx+a是“X-函数”,求实数a的取值范围;
(Ⅲ)已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x∈A}\\{x,x∈B}\end{array}\right.$是“X-函数”,且在R上单调递增,求所有可能的集合A与B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点P在边长为1的正方形ABCD内运动,则动点P到顶点A的距离|PA|≤1概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点Q(2$\sqrt{2}$,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有(  )
A.30辆B.300辆C.170辆D.1700辆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,试证明AF⊥平面PCD;
(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点M,使得EM⊥平面PCD?(直接给出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:(x-2)2+y2=4,线段EF在直线l:y=x+1上运动,点P为线段EF上任意一点,若圆C上存在两点A,B,使得$\overrightarrow{PA}$•$\overrightarrow{PB}$≤0,则线段EF长度的最大值是$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若正实数x,y满足不等式2x+y<4,则x-y的取值范围是(  )
A.[-4,2]B.(-4,2)C.(-2,2]D.[-2,2)

查看答案和解析>>

同步练习册答案