精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中是自然对数的底数.

(1)若上存在两个极值点,求的取值范围;

(2)若,证明:.

【答案】(1) (2)见证明

【解析】

(1)上存在两个极值点等价于有两个根,分离参数,分析函数的单调性及极值,即可得出取值;

范围.(2),等价于,,利用导数求函数的最值,证明最大值小于0即可.

(1)由题意可知,

上存在两个极值点等价于有两个根,

可得,,令

,令

可得,当时,

所以上单调递减,且

时,单调递增;

时,单调递减;

所以的极大值也是最大值,又当,当 大于趋向于

要使有两个根,只需

所以的取值范围为

(2)证明:,等价于

,

时,,单调递增,所以

时,,令

,又

,且使,即

则有

因为,故存在唯一零点

有唯一的极值点且为极小值点

可得,,故

因为,故上的增函数,

所以,所以

综上,当时,总有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市教育局卫生健康所对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们身高都处于五个层次,根据抽样结果得到如下统计图表,则从图表中不能得出的信息是( )

A. 样本中男生人数少于女生人数

B. 样本中层次身高人数最多

C. 样本中层次身高的男生多于女生

D. 样本中层次身高的女生有3人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为线段上一点,且平面与平面所成的角为.

1)求证:平面平面

2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查煤矿公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;

(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为,求的分布列与期望;

(Ⅲ)经调查该煤矿公司若干户家庭的年收入(万元)和年饮食支出(万元)具有线性相关关系,并得到关于的回归直线方程:.若该公司一个员工与其妻子的月收入恰好都为这30人的月平均收入(该家庭只有两人收入),估计该家庭的年饮食支出费用.

附:

.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从AB两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图和地区用户满意度评分的频数分布表.

地区用户满意度评分的频率分布直方图

地区用户满意度评分的频数分布表

满意度评分分组

频数

2

8

14

10

6

1)在图中作出地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).

地区用户满意度评分的频率分布直方图

2)根据用户满意度评分,将用户的满意度分为三个等级:

td style="width:88.95pt; border-left-style:solid; border-left-width:0.75pt; border-bottom-style:solid; border-bottom-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

不低于90

满意度评分

低于70

70分到89

满意度等级

不满意

满意

非常满意

公司负责人为了解用户满意度情况,从地区中调查8户,其中有2户满意度等级是不满意,求从这8户中随机抽取2户检查,抽到不满意用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等比数列,数列是等差数列,且 .

求(Ⅰ)求的通项公式;

(Ⅱ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,各棱长均为4, 分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为.我们将其结论推广:椭圆)上的点处的切线方程为,在解本题时可以直接应用.已知,直线与椭圆)有且只有一个公共点.

1)求椭圆的方程;

2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点.变化时,求面积的最大值;

3)若是椭圆上不同的两点,轴,圆且椭圆上任意一点都不在圆内,则称圆为该椭圆的一个内切圆.试问:椭圆是否存在过左焦点的内切圆?若存在,求出圆心的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案