精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=
6
,点E是棱PB的中点.
(1)求直线AD与平面PBC的距离;
(2)若AD=
3
,求二面角A-EC-D的平面角的余弦值.
分析:(1)先根据AD∥BC,推断出AD∥平面PBC,进而可知直线AD与平面PBC的距离为点A到平面PBC的距离,根据PA⊥底面ABCD,判断出PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,进而可知AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,进而可推断出AE之长即为直线AD与平面PBC的距离.Rt△PAB中,根据PA和AB求得AE.
(2)过点D作DF⊥CE,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而求得DE在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.
解答:解:(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,
因PA⊥底面ABCD,故PA⊥AB,知△PAB为等腰直角三角形,
又点E是棱PB的中点,故AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,
由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,
故AE之长即为直线AD与平面PBC的距离,
在Rt△PAB中,PA=AB=
6

所以AE=
1
2
PB=
1
2
PA2+AB2
=
3

(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.
由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,
故AD⊥AE,从而DE=
AE2+AD2
=
6

在Rt△CBE中,CE=
BE2+BC2
=
6
,由CD=
6

所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sin
π
3
=
3
2
2

因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=
1
2
AE,
从而FG=
3
2
,且G点为AC的中点,连接DG,则在Rt△ADC中,DG=
1
2
AD 2+CD2
=
3
2

所以cos∠DFG=
DF2+FG2-DG2
2DF•FG
=
6
3
点评:本题主要考查了点,线,面的距离计算.在求两面角问题时关键是找到两个面的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案