现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是________.
126
分析:根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.
解答:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A32=18种;
②甲乙不同时参加一项工作,进而又分为2种小情况;
1°丙、丁、戌三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;
2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:A32×C31×C21×A22=72种;
由分类计数原理,可得共有18+36+72=126种,
故答案为126.
点评:本题考查排列、组合及简单计数问题,解题的关键是正确理解题意,确定安排工作的顺序,再就是确定分类的标准,此是本题的难点,分类标准不清易导致重复计数或者漏计,分类计数时注意做到不重不漏,本题考查了分类讨论的思想