精英家教网 > 高中数学 > 题目详情

【题目】如图,线段是等腰的一条中位线,为线段的中点,.现将沿折起到的位置,使得.

1)求证:

2)探究:在线段上是否存在一点,使得平面,若存在,请指出点的位置并说明理由.若不存在,请说明理由.

【答案】1)证明见解析;(2)存在,的中点,理由见解析

【解析】

1)取中点,根据已知在中,求出,在求出,可证,再由,得出,即可证明结论;

(2)分别取线段的中点,可证四边形为平行四边形,可得,即可证明结论.

1)取中点,连

因为,故

,故

,由等腰三角形性质可知,

因为,故

因为,故

2)分别取线段的中点,连接.

因为在中,分别为的中点,

所以.

因为分别为的中点,

所以

所以

所以四边形为平行四边形,所以.

因为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是函数的极值点.

(Ⅰ)求实数的值;

(Ⅱ)求证:函数存在唯一的极小值点,且.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

)求函数的解析式;

)求证:对于区间上任意两个自变量的值,都有

)若过点可作曲线的三条切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.

(1)求该学生进入省队的概率.

(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(-4,0)的动直线l与抛物线相交于DE两点,已知当l的斜率为时,.

1)求抛物线C的方程;

2)设的中垂线在轴上的截距为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy满足约束条件,当时,的最小值是________.的最大值是-1,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个线性回归方程,变量x增加1个单位时,y平均增加5个单位;

③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;

④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.

以上错误结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:

月收入(百元)

频数

20

40

60

40

20

20

认同超前消费的人数

8

16

28

21

13

16

(1)根据以上统计数据填写下面列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;

月收入不低于8000元

月收入低于8000元

总计

认同

不认同

总计

(2)若从月收入在的被调查对象中随机选取2人进行调查,求至少有1个人不认同“超前消费”的概率.

参考公式:(其中).

附表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案