精英家教网 > 高中数学 > 题目详情

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

ωx+φ

0

π

x

Asinωx+φ

0

5

-5

0

1请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数fx的解析式;

2图象上所有点向左平行移动个单位长度,得到的图象,求的图象离原点O最近的对称中心.

【答案】12.

【解析】

试题分析:1先根据,求出,再令分别等于求出的值即可完成表格和解析式;2根据平移变换的规则,令,求出的最小正值即得距离原点最近的零点.

试题解析:1

由上表可得: f x=5sin.

21fx=5sin,因此gx=5sin=5sin.

因为y=sin x的对称中心为kπ,0,kZ.

=kπ,kZ,解得x=,kZ.即y=gx图象的对称中心为,kZ,

y=gx图象离原点O最近的对称中心为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别为椭圆)的左、右两个焦点.

(1)若椭圆上的点两点的距离之和等于,求椭圆的方程和焦点坐标;

(2)设点是(1)中所得椭圆上的动点,,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若在区间上的最小值为,求的取值范围;

(2)若对任意,且恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1的切线与直线平行,求的值;

2不等式对于的一切值恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.

(1)求抛物线的方程;

(2)过点作直线交抛物线于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,面为矩形,的中点,交于点.

证明:

,求BC与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)如是函数的极值点,求实数的值并讨论的单调性

(2)若是函数的极值点,且恒成立,求实数的取值范围(注:已知常数满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四棱锥中,底面是正方形,

(1)如图2,设点的中点,点的中点,求证: 平面

(2)已知网格纸上小正方形的边长为,请你在网格纸上用粗线画图1中四棱锥的府视图(不需要标字母),并说明理由

查看答案和解析>>

同步练习册答案