精英家教网 > 高中数学 > 题目详情

已知向量数学公式数学公式数学公式满足数学公式+数学公式+数学公式=0,数学公式数学公式数学公式-数学公式所成的角为120°,则当t∈R时,|t数学公式+(1-t)数学公式|的取值范围是________.


分析:利用向量的线性运算、夹角的意义、共线定理并画出图形即可求出.
解答:由题意画出图形:
===-

-所成的角为120°,
,∠OEA=120°.
,即
=
由图可知:当时,取得最小值.
在Rt△OPE中,===
故当t∈R时,|t+(1-t)|的取值范围是
故答案为
点评:熟练掌握向量的线性运算、夹角的意义、共线定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
α
β
γ
满足|
α
|=1
|
α
-
β
|=|
β
|
(
α
-
γ
)•(
β
-
γ
)=0
.若对每一确定的
β
|
γ|
的最大值和最小值分别为m,n,则对任意
β
,m-n的最小值是(  )
A、
1
2
B、
1
4
C、
3
4
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把一系列向量
ai
(i=1,2,…,n)
按次序排成一列,称之为向量列,记作{
an
}
.已知向量列{
an
}
满足:
a1
=(1,1),
an
=(xnyn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)
,.
(1)证明数列{
|an
|}
是等比数列;
(2)设θn表示向量
an-1
an
间的夹角,求证cosθn是定值;
(3)若bn=2nθn-1,Sn=b1+b2+…+bn,求
lim
n→∞
bnSn2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
α
β
γ
满足|
α
|=1,|
α
-
β
|=|
β
|,(
α
-
γ
)•(
β
-
γ
)=0.若对每一确定的
β
,|
γ
|的最大值和最小值分别为m,n,则对任意
β
,m-n的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•松江区二模)我们把一系列向量
ai
(i=1,2,…,n)按次序排成一列,称之为向量列,记作{
ai
}.已知向量列{
ai
}满足:
a1
an
=
1
2
(xn-1-yn-1xn-1+yn-1)
(n≥2).
(1)证明数列{|
ai
|}是等比数列;
(2)设θn表示向量
an-1
an
间的夹角,若bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)设|
an
|•log2|
an
|,问数列{cn}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三第一次质量检测理科数学试卷(解析版) 题型:选择题

已知向量满足.若对每一确定的,的最大值和最小值分别为,则对任意的最小值是 (   )

A.              B.1                C.2                D.

 

查看答案和解析>>

同步练习册答案