A. | (-∞,1] | B. | [1,+∞) | C. | (-∞,0] | D. | [0,+∞) |
分析 由?x1∈[$\frac{1}{2}$,3],都?x2∈[2,3],使得f(x1)≥g(x2),可得f(x)在x1∈[$\frac{1}{2}$,3]的最小值不小于g(x)在x2∈[2,3]的最小值,构造关于a的不等式,可得结论.
解答 解:当x1∈[$\frac{1}{2}$,3]时,由f(x)=x+$\frac{4}{x}$得,f′(x)=$\frac{{x}^{2}-4}{{x}^{2}}$,
令f′(x)>0,解得:x>2,令f′(x)<0,解得:x<2,
∴f(x)在[$\frac{1}{2}$,2]单调递减,在(2,3]递增,
∴f(2)=4是函数的最小值,
当x2∈[2,3]时,g(x)=2x+a为增函数,
∴g(2)=a+4是函数的最小值,
又∵?x1∈[$\frac{1}{2}$,3],都?x2∈[2,3],使得f(x1)≥g(x2),
可得f(x)在x1∈[$\frac{1}{2}$,3]的最小值不小于g(x)在x2∈[2,3]的最小值,
即4≥a+4,解得:a≤0,
故选:C
点评 本题以命题的真假判断与应用为载体,考查的知识是指数函数以及对勾函数函数的图象和性质,考察导数的应用,函数的单调性问题,本题是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | 300m | B. | 200$\sqrt{2}$m | C. | 200$\sqrt{3}$m | D. | 300$\sqrt{2}$m |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{\frac{1}{13},2}]$ | B. | [$\frac{2}{13}$,1] | C. | $[{\frac{1}{6},6}]$ | D. | $[{\frac{1}{3},3}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
T(分钟) | 25 | 30 | 35 | 40 |
频数(次) | 100 | 150 | 200 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | b<a<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com