精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD底面ABCD,当的值等于多少时,能使PBAC?并给出证明.
=时,能使PBAC
=时,能使PBAC
证明:取AD中点F,连接PF,
PFAD,面PAD面ABCD,
PF面ABCD,
连结BF,交AC于O,则根据题意,当=时,有
AC=AB,AF=AB,AO=AB,FO=AB.
∴AF2=AO2+FO2,即FBAC,
由三垂线定理可证得PBAC.
∴当=时,能使PBAC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(湖南省●2010年月考)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.

(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.
                                                       
                                                       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体ABCD-A1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为则此球的表面积为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面α⊥平面β,交线为ABCDEBC的中点,ACBDBD=8.

①求证:BD⊥平面
②求证:平面AED⊥平面BCD
③求二面角BACD的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在棱长为1的正方体中,
(I)在侧棱上是否存在一个点P,使得直线与平面所成角的正切值为
;(Ⅱ)若P是侧棱上一动点,在线段上是否存在一个定点,使得在平面上的射影垂直于.并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,为原正方体的顶点,为原正方体一条棱的中点。在原来的正方体中,所成角的余弦值为     (   )
  
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知四棱锥P—ABCD,
底面ABCD是菱形,平面ABCD,PD=AD,点E为AB中点,点F为PD中点。  (1)证明平面PED⊥平面PAB;  (2)求二面角P—AB—F的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 如图:在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.

D

 
图1
 

          
(1)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面图形的面积.
(2)图3中,L、E均为棱PB上的点,且,M、N分别为棱PA 、PD的中点,问在底面正方形的对角线AC上是否存在一点F,使EF//平面LMN. 若存在,请具体求出CF的长度;若不存在,请说明理由.
 

查看答案和解析>>

同步练习册答案