精英家教网 > 高中数学 > 题目详情
双曲线3x2-4y2=-12的焦点为F1、F2,则(  )
A、F1(5,0),F2(-5),0
B、F1
7
,0),F2(-
7
,0)
C、F1(0,
7
),F2(0,-
7
D、F1(1,0),F2(-1,0)
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:将双曲线方程化为标准方程,求出a,b,c,即可得到焦点坐标.
解答: 解:双曲线3x2-4y2=-12即为
y2
3
-
x2
4
=1,
则a=
3
,b=2,c=
3+4
=
7

则有双曲线的焦点为(0,-
7
),(0,
7
).
故选:C.
点评:本题考查双曲线的方程和性质,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题:①d<0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11,其中正确命题序号是(  )
A、②③B、①②C、①③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a
2
1
+
y2
b
2
1
=1(a1>b1>0)的离心率为
2
2
,双曲线
x2
a
2
2
-
y2
b
2
2
=1(a2>0,b2>0)与椭圆有相同的焦点F1,F2,M是两曲线的一个公共点,若∠F1MF2=60°,则双曲线的渐进线方程为(  )
A、y=±
2
2
x
B、y=±x
C、y=±
2
x
D、y=±
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x
x
,x≥1
2x-1,x<1
,g(x)=x2-2x,若关于x的方程f[g(x)]=k有四个不相等的实根,则实数k∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过圆x2+y2-2x+4y-4=0的圆心,且在y轴上的截距等于圆的半径,则直线l的方程为(  )
A、5x+y-3=0
B、5x-y-3=0
C、4x+y-3=0
D、3x+2y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:2x+y+4=0与圆C:x2+y2+2x-4y+1=0相交于A,B两点,求:
(1)线段AB的长;
(2)以AB为直径的圆M的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为△ABC的三个内角,且向量
m
=(1,cos
C
2
)与
n
=(
3
sin
C
2
+cos
C
2
3
2
)共线.求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

满足tanA>-1的三角形内角A的取值范围是(  )
A、(0,
4
B、(0,
π
2
)∪(
π
2
4
C、(
4
,π)
D、(0,
π
2
)∪(
4
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为(  ) 
A、1
B、
3
3
C、
3
D、
2
3
3

查看答案和解析>>

同步练习册答案