精英家教网 > 高中数学 > 题目详情

【题目】已知矩阵)满足I为单位矩阵).

1)求m的值;

2)设.矩阵变换可以将点P变换为点Q当点P在直线上移动时,求经过矩阵A变换后点Q的轨迹方程.

3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,求出所有这样的直线;若不存在,则说明理由.

【答案】(1)(2)(3)存在,

【解析】

1)计算,由可求得

2)由,得,解得.代入可得;

3)首先确定这种变换,与坐标轴垂直的直线不合题意,因此设直线方程为,求出变换后的直线方程,两方程表示的直线重合,可求得,可分类

(1)

(2)

∵点在直线上,

即点的轨迹方程

(3)垂直于坐标轴的直线不合要求.

时,,无解.

时,,

解得

∴所求直线是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务和责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准,为此,对全市家庭日常用水的情况进行抽样调查,并获得了个家庭某年的用水量(单位:立方米),统计结果如下表所示.

(Ⅰ)分别求出的值;

(Ⅱ)若以各组区间中点值代表该组的取值,试估计全市家庭平均用水量;

(Ⅲ)从样本中年用水量在(单位:立方米)的个家庭中任选个,作进一步跟踪研究,求年用水量最多的家庭被选中的概率(个家庭的年用水量都不相等).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极坐标建立极坐标系,圆的极坐标方程为.

的普通方程;

将圆平移,使其圆心为,设是圆上的动点,点关于原点对称,线段的垂直平分线与相交于点,求的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆1ab0)的右顶点为(20),离心率为P是直线x4上任一点,过点M10)且与PM垂直的直线交椭圆于AB两点.

1)求椭圆的方程;

2)若P点的坐标为(43),求弦AB的长度;

3)设直线PAPMPB的斜率分别为k1k2k3,问:是否存在常数λ,使得k1+k3λk2?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面边上一点,.

(1)证明:平面平面.

(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面边上一点,.

(1)证明:平面平面.

(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.

1)求圆O的方程;

2)圆Ox轴交于EF两点,圆O内的动点D使得DEDODF成等比数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:

则下列结论中正确的是( )

A. 该家庭2018年食品的消费额是2014年食品的消费额的一半

B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当

C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍

D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍

查看答案和解析>>

同步练习册答案