精英家教网 > 高中数学 > 题目详情

(04年福建卷文)(14分)

已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

 

解析:(Ⅰ)f'(x)=4+2  ∵f(x)在[-1,1]上是增函数,

∴f'(x)≥0对x∈[-1,1]恒成立,

即x2-ax-2≤0对x∈[-1,1]恒成立.        ①

(x)=x2-ax-2,

方法一:

①      -1≤a≤1,

∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0

∴A={a|-1≤a≤1}.

方法二:

 

       0≤a≤1         或   -1≤a≤0

       -1≤a≤1.

∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0

∴A={a|-1≤a≤1}.

(Ⅱ)由

∵△=a2+8>0

∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,

从而|x1-x2|==.

∵-1≤a≤1,∴|x1-x2|=≤3.

要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,

当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,

即m2+tm-2≥0对任意t∈[-1,1]恒成立.        ②

设g(t)=m2+tm-2=mt+(m2-2),

方法一:

②    g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,

               

m≥2或m≤-2.

所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.

方法二:

当m=0时,②显然不成立;

当m≠0时,

  m>0, g(-1)=m2-m-2≥0   或m<0,g(1)=m2+m-2≥0

 m≥2或m≤-2.

所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(04年福建卷文)(12分)

甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.

(Ⅰ)分别求甲、乙两人考试合格的概率;

(Ⅱ)求甲、乙两人至少有一人考试合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年福建卷文)已知展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是

                                                                                                                              (    )

       A.28                       B.38                       C.1或38                D.1或28

查看答案和解析>>

同步练习册答案