精英家教网 > 高中数学 > 题目详情
(2008•扬州二模)数列{an}的首项a1=1,前n项和为Sn,满足关系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…)
(1)求证:数列{an}为等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
),(n=2,3,4…),求bn
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.
分析:(1)由已知3tSn-(2t+3)Sn-1=3t,可得3tsn-1-(2t+3)sn-2=3t,两式相减可得数列an与an-1的递推关系,从而可证.
(2)把f(t)的解析式代入bn,进而可知bn=
2
3
+bn-1,判断出{bn}是一个首项为1,公差为
2
3
的等差数列.进而根据等差数列的通项公式求得答案.
(3){bn}是等差数列,用分组法求得数列的b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1和.
解答:(1)证:∵3tSn-(2t+3)Sn-1=3t,3tSn+1-(2t+3)Sn=3t(n≥2),两式相减得3tan+1-(2t+3)an=0
又t>0
an+1
an
=
2t+3
3t
(n≥2),
又当n=2时,3tS2-(2t+3)S1=3t,
即3t(a1+a2)-(2t+3)a1=3t,得a2=
2t+3
3t

a2
a1
=
2t+3
3t

an+1
an
=
2t+3
3t
(n≥1),
∴{an}为等比数列
(2)解:由已知得,f(t)=
2t+3
3t

∴bn=f(
1
bn-1
)=
3+
2
bn-1
3
bn-1
=
2
3
+bn-1(n≥2,n∈N*).
∴{bn}是一个首项为1,公差为
2
3
的等差数列.
于是bn=
2
3
n+
1
3

(3)解:Tn=b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2(b2+b4+…+b2n
=-2d(b2+b4+…+b2n
=-2×
2
3
[
5n
3
+
n(n-1)
2
×
4
3
]

=-
8n2
9
-
4n
3
点评:本题主要考查了利用递推关系实现数列和与项的相互转化,进而求通项公式,等差数列的通项公式的运用,数列的求和,在解题中体现了分类讨论的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•扬州二模)已知a1=0,an+1=an+(2n-1),则an=
(n-1)2
(n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•扬州二模)计算:(-
1
2
+
3
2
i)10-(
1-i
2
)6
=
-
1
2
+
3
-2
2
i
-
1
2
+
3
-2
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•扬州二模)已知二次函数f(x)=x2-2x+6,设向量a=(sinx,2),b=(2sinx,
1
2
),c=(cos2x,1),d=(1,2).当x∈[0,π]时,不等式f(a•b)>f(c•d)的解集为
π
4
4
π
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•扬州二模)如图,平面内有三个向量
OA
OB
OC
,其中与
OA
OB
的夹角为120°,
OA
OC
的夹角为30°,且|
OA
|=2,|
OB
|=1,|
OC
|=2
3
,若
OC
OA
OB
(λ,μ∈R),则λ+μ的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•扬州二模)设m为实数,A={(x,y)|
x-2y+5≥0
3-x≥0
mx+y≥0
}
,B={(x,y)|x2+y2≤25},若A⊆B,则m的取值范围是
[0,
4
3
]
[0,
4
3
]

查看答案和解析>>

同步练习册答案