【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知,
求证:(1)直线平面;
(2)平面 平面.
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标和,制成下图,其中“”表示甲村贫困户,“”表示乙村贫困户.
若,则认定该户为“绝对贫困户”,若,则认定该户为“相对贫困户”,若,则认定该户为“低收入户”;
若,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.
(1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户”的概率;
(2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望;
(3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个计算装置有两个数据输入端口I,II与一个运算结果输出端口III,当I,II分别输入正整数时,输出结果记为且计算装置运算原理如下:
①若I,II分别输入则
②若I输入固定的正整数II输入的正整数增大则输出的结果比原来增大
③若II输入I输入正整数增大则输出结果为原来的倍.则(1) = 为正整数);(2)(1)f(m,1)=__,(2)若由f(m,1)得出f(m,n),则满足f(m,n)=30的平面上的点(m,n)的个数是__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某城市居民家庭年收入(万元)和年“享受资料消费”(万元)进行统计分析,得数据如表所示.
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程.
(2)若某家庭年收入为18万元,预测该家庭年“享受资料消费”为多少?
(参考公式:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩(满分为100分),将数学成绩进行分组,并根据各组人数制成如下频率分布表:
(1)写出的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);
(2)现从成绩在内的学生中任选出两名同学,从成绩在内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若同学的数学成绩为43分,同学的数学成绩为分,求两同学恰好都被选出的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩。
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据其回归线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,解答下列问题:
(1)求输入的的值分别为时,输出的的值;
(2)根据程序框图,写出函数()的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·全国Ⅱ卷)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com