精英家教网 > 高中数学 > 题目详情

已知椭圆C1y2=1,椭圆C2C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点AB分别在椭圆C1C2上,=2,求直线AB的方程.

(1)=1(2)yxy=-x

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).
(1)求椭圆C的标准方程;
(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.

(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;
(3)过的直线与轨迹E交于P、Q两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程表示焦点在轴上的双曲线。命题曲线轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(ab>0)上任一点P到两个焦点的距离的和为2P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1y1),B(x2y2).
(1)若 (O为坐标原点),求|y1y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QAQB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.
 
(1)求椭圆C1的方程;
(2)求当△ABD的面积取最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设AB分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于CD两点.若=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

同步练习册答案