精英家教网 > 高中数学 > 题目详情

【题目】下列命题中的假命题是(  )

A. αβR,使sin(αβ)sinαsinβ

B. φR,函数f(x)sin(2xφ)都不是偶函数

C. x0R,使 (abcR且为常数)

D. a>0,函数f(x)ln2xlnxa有零点

【答案】B

【解析】α0时,sin(αβ)sinαsinβA正确;

时,函数是偶函数,B错误;

对于三次函数f(x)x3ax2bxc,当x时,y,当x时,y,又f(x)R上为连续函数,故x0R,使C正确;

f(x)0ln2xlnxa0,则有,所以a>0,函数f(x)ln2xlnxa0有零点,D正确.

本题选择B选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

平面直角坐标系xOy中,射线lyx(x≥0),曲线C1的参数方程为 (α为参数),曲线C2的方程为x2+(y-2)2=4;以原点为极点,x轴的非负半轴为极轴建立极坐标系. 曲线C3的极坐标方程为ρ=8sin θ.

(Ⅰ)写出射线l的极坐标方程以及曲线C1的普通方程;

(Ⅱ)已知射线lC2交于OM,与C3交于ON,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|3x-1|-2|x|+2.

(Ⅰ)解不等式:f(x)<10;

(Ⅱ)若对任意的实数x,f(x)-|x|≤a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数f(x)的最小值;

(2)已知m∈R,p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立,q:函数y=(m2-1)x是增函数,若p正确,q错误,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856266)[选修4-5:不等式选讲]

设函数f(x)=|2x-1|-|x+2|.

(Ⅰ)解不等式f(x)>0;

(Ⅱ)若x0∈R,使得f+2m2<4m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)求曲线在点P(2,4)处的切线方程;

(2)求曲线过点P(2,4)的切线方程;

(3)求斜率为1的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856290)[选修4-5:不等式选讲]

已知函数f(x)=|xa|+|x-2a|.

(Ⅰ)对任意x∈R,不等式f(x)>1成立,求实数a的取值范围;

(Ⅱ)当a=-1时,解不等式f(x)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856301)已知函数f(x)=m(x-1)exx2(m∈R),其导函数为f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

查看答案和解析>>

同步练习册答案