精英家教网 > 高中数学 > 题目详情
已知命题p:函数y=ax+1的图象恒过定点(0,1);命题q:若函数y=f(x)为偶函数,则函数y=f(x+1)的图象关于直线x=1对称,则下列命题为真命题的是(  )
A、p∨qB、p∧qC、¬p∧qD、p∨¬q
分析:复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.
解答:解:函数y=ax+1的图象可看成把函数y=ax的图象上每一个点的横坐标向左平移一个单位得到,
而y=ax的图象恒过(0,1),所以y=ax+1的图象恒过(-1,1),则p为假命题;
若函数y=f(x)为偶函数,即y=f(x)的图象关于y轴对称,
y=f(x+1)的图象即y=f(x)图象整体向左平移一个单位得到,
所以y=f(x+1)的图象关于直线x=-1对称,则q为假命题;
故p∨¬q为真命题.
故选:D.
点评:本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数y=lgx2的定义域是R,命题q:函数y=(
13
)
x
的值域是正实数集,给出命题:①p或q;②p且q;③非p;④非q.其中真命题个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上单调递增.q:关于x的不等式ax2-ax+1>0解集为R.若p∧q假,p∨q真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=loga(1-2x)在定义域上单调递增,命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P∨Q是真命题,P∧Q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=log 0.5(x2+2x+a)的值域为R,命题q:函数y=(x-a)2在(2,+∞)上是增函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=lg(ax2-x+
a16
)定义域为R; 命题Q:函数y=(5-2a)x为增函数;若“p∨q”为真命题,“p∧q:”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案