(12分)如图所示,桶1中的水按一定规律流入桶2中,已知开始时桶1中有升水,桶2是空的,分钟后桶1中剩余的水符合指数衰减曲线(其中是常数,是自对数的底数).假设在经过5分钟时,桶1和桶2中的水恰好相等.求:
(Ⅰ)桶2中的水与时间的函数关系式;
(Ⅱ)再过多少分钟,桶1中的水是?
科目:高中数学 来源:2012-2013学年甘肃省河西五市高三第一次联合考试文科数学试卷(解析版) 题型:解答题
(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.
(1)证明:平面PBE平面PAB;
(2)求PC与平面PAB所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年云南玉溪一中高三上学期期中考试文科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:PQ⊥平面DCQ;
(2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题
(本小题满分12分)如图所示多面体中,⊥平面,为平行四边形,分别为的中点,,,.
(1)求证:∥平面;
(2)若∠=90°,求证;
(3)若∠=120°,求该多面体的体积.
查看答案和解析>>
科目:高中数学 来源:2011年山东省青岛市高考模拟练习题(一)数学(理) 题型:解答题
(本小题满分12分)如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已知平面,,,, 为的中点,面.
(Ⅰ)求的长;
(Ⅱ)求证:面面;
(Ⅲ)求平面与平面相交所成锐角二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省中山市高三第一次月考数学理卷 题型:解答题
(本小题满分12分)如图所示,在正方体中,
E为AB的中点
(1)若为的中点,求证: ∥面;
(2) 若为的中点,求二面角的余弦值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com