精英家教网 > 高中数学 > 题目详情

【题目】三棱锥A﹣BCD的两条棱AB=CD=6,其余各棱长均为5,求三棱锥的内切球半径.

【答案】解:法一:易知内切球球心O到各面的距离相等.

设E、F为CD、AB的中点,则O在EF上且O为EF的中点.

在△ABE中,AB=6,AE=BE=4,OH=

解法二:设球心O到各面的距离为R.

SBCD×R=VABCD

∵SBCD= ×6×4=12,

VABCD=2VCABE=6

∴4× ×12R=6

∴R=


【解析】法一:内切球球心O到各面的距离相等,如图,可以推断出球心在AB和CD的中点的连线的中点,求出OH即可.

法二:先求四面体的体积,再求表面积,利用体积等于表面积和高乘积的 ,求出内切球半径.

【考点精析】本题主要考查了棱锥的结构特征的相关知识点,需要掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足:a7=a6+2a5 , 若存在两项am , an , 使得 =4a1 , 则 + 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,设点M(x0 , y0)是椭圆C: +y2=1上一点,从原点O向圆M:(x﹣x02+(y﹣y02=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ的斜率分别记为k1 , k2
(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
(2)若r= ,①求证:k1k2=﹣ ;②求OPOQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 的值的一个程序框图,其中判断框内应填入的条件是(
A.i≤100
B.i>100
C.i>50
D.i≤50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD底面是一个棱长为2的菱形,且∠DAB=60°,各侧面和底面所成角均为60°,则此棱锥内切球体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (θ为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为( ),过点M的直线l与曲线C相交于A,B两点,若|MA|=2|MB|,求AB的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:
①一次性缴纳50万元,可享受9折优惠;
②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.
请通过计算,帮助王亮同学判断那种方案交纳的保费较低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,已知 底面 ,且 的中点, 上,且 .

(1)求证:平面 平面
(2)求证: 平面
(3)求三棱锥 的体积.

查看答案和解析>>

同步练习册答案
关 闭