精英家教网 > 高中数学 > 题目详情
5.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:PA∥平面EDB;
(2)求二面角F-DE-B的正弦值.

分析 (1)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能证明PA∥平面EDB.
(2)求出平面EFD的一个法向量和平面DEB的法向量,利用向量法能求出二面角F-DE-B的正弦值.

解答 证明:(1)以D为原点,DA为x轴,DC为y轴,DP为z轴,如图建立空间直角坐标系,
设DC=1.…..…(1分)
连结AC,AC交BD于点G,连结EG.
依题意得A(1,0,0),P(0,0,1),E(0,$\frac{1}{2},\frac{1}{2}$).
∵底面ABCD是正方形,∴点G是此正方形的中心,
故点G($\frac{1}{2},\frac{1}{2},0$),且$\overrightarrow{PA}$=(1,0,-1),$\overrightarrow{EG}$=($\frac{1}{2},0,-\frac{1}{2}$).
∴$\overrightarrow{PA}=2\overrightarrow{EG}$,即PA∥EG,而EG?平面EDB,且PA?平面EDB,
∴PA∥平面EDB.  …(6分)
解:(2)B(1,1,0),$\overrightarrow{PB}$=(1,1,-1),
又$\overrightarrow{DE}$=(0,$\frac{1}{2},\frac{1}{2}$),故$\overrightarrow{PB}$•$\overrightarrow{DE}$=0,∴PB⊥DE.
由已知EF⊥PB,且EF∩DE=E,∴PB⊥平面EFD.…(7分)
∴平面EFD的一个法向量为$\overrightarrow{PB}$=(1,1,-1).
$\overrightarrow{DE}$=(0,$\frac{1}{2},\frac{1}{2}$),$\overrightarrow{DB}$=(1,1,0),
不妨设平面DEB的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=\frac{1}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),…(10分)
设二面角F-DE-B的平面角为θ,
cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{PB}|}{|\overrightarrow{n}|•|\overrightarrow{PB}|}$=$\frac{1}{3}$,∴sin$\frac{2\sqrt{2}}{2}$.
∴二面角F-DE-B的正弦值大小为$\frac{2\sqrt{2}}{3}$. …(13分)

点评 本题考查线面平行的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在平行六面体ABCD-A1B1C1中,模与向量$\overrightarrow{{A_1}{B_1}}$的模相等的向量有(  )
A.7个B.3个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,则f(f(2))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2$\sqrt{2}$,E,F分别是AD,PC的中点.
(1)证明:PC⊥平面BEF;
(2)求平面BEF与平面BAP所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a2x-2ax+1+2(a>0,a≠1)的定义域为x∈[-1,+∞)
(1)若a=2,求y=f(x)的最小值;
(2)当0<a<1时,若至少存在x0∈[-2,-1]使得f(x0)≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l:12x-5y=3与x2+y2-6x-8y+16=0相交于A,B两点,则|AB|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后射到直线OB上,再经直线OB反射后射到P点,则光线所经过的路程PM+MN+NP等于(  )
A.$2\sqrt{10}$B.6C.$3\sqrt{3}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l经过直线2x+y+5=0与x-2y=0的交点,圆C1:x2+y2-2x-2y-4=0与圆C2:x2+y2+6x+2y-6=0相较于A、B两点.
(1)若点P(5,0)到直线l的距离为4,求l的直线方程;
(2)若直线l与直线AB垂直,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知正方体ABCD-A1B1C1D1中,点E是上底面A1C1的中心,化简下列向量表达式,并在图中标出化简结果的向量.
(1)$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{{C}_{1}C}$;
(2)$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{DA}$-$\overrightarrow{{A}_{1}A}$.

查看答案和解析>>

同步练习册答案